Skip to main content
Log in

Singularity for the Drift-Flux System of Two-Phase Flow with the Generalized Chaplygin Gas

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

This article considers the formation of singularity in the one-dimensional isentropic drift-flux system of two-phase flow with the generalized Chaplygin gas. We give an appropriate initial condition that results in the formation of singularity in finite time. Notably, the formation of singularity is accompanied by the concentration of mass. Furthermore, we verify the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availibility Statement

No data associated in the manuscript.

References

  1. Ishii, M., Hibiki, T.: Thermo-fluid dynamics of two-phase flow. Phys. Bull. 26, 544 (1975)

  2. Drew, D.A., Passman, S.L.: Theory of multicomponent fluids. AMS B, 135 (1998)

  3. Wallis, G.B.: One dimensional two-phase flow. McGraw-Hill, New York, 243 (1969)

  4. Zuber, N.: Hydrodynamic aspects of boiling heat transfer (thesis). United States (1959)

  5. Anderson, D.A., Tannehill, J.C., Fletcher, R.H.: Computational fluid mechanics and heat transfer. CRC Press (2020)

  6. Versteeg, H.K., Malalasekera, W.: An introduction to computational fluid dynamics-the finite volume method. Harlow, England: Pearson Education Ltd. (2007)

  7. Schlegel, J.P., Hibiki, T., Ishii, M.: Development of a comprehensive set of drift-flux constitutive models for pipes of various hydraulic diameters. Prog. Nucl. Energy 52, 666–677 (2010)

    Article  CAS  Google Scholar 

  8. Zuber, N., Findlay, J.W.: Average volumetric concentration in two-phase flow systems. J. Heat Trans-t. ASME 87, 453–468 (1965)

    Article  CAS  Google Scholar 

  9. Li, S., Shen, C.: On the wave interactions for the drift-flux equations with the Chaplygin gas. Monatsh. Math. 197(4), 635–654 (2022)

    Article  MathSciNet  Google Scholar 

  10. Shen, C., Sun, M.: Exact Riemann solutions for the drift-flux equations of two-phase flow under gravity. J. Differ. Equ. 314, 1–55 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  11. Shen, C.: The singular limits of solutions to the Riemann problem for the liquid-gas two-phase isentropic flow model. J. Math. Phys. 61(8), 081502 (2020)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  12. Shen, C.: The asymptotic limits of Riemann solutions for the isentropic drift-flux model of compressible two-phase flows. Math. Methods Appl. Sci. 43(6), 3673–3688 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  13. Lima, L.E.M.: Application of the one-dimensional drift-flux model for numerical simulation of gas-liquid isothermal flows in vertical pipes: a mechanistic approach based on the flow pattern. SN Appl. Sci. 2, 658 (2020)

    Article  CAS  Google Scholar 

  14. Patankar, S.V.: Numerical heat transfer and fluid flow. Lect. Notes Mech. Eng. 9, 163–183 (2018)

    Google Scholar 

  15. Chen, S., Doolen, G.D.: Lattice boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329–364 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  16. Celik, I.B., Ghia, U., Roache, P.J., Freitas, C.J.: Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. ASME. J. Fluids Eng. 130(7), 078001 (2008)

    Article  Google Scholar 

  17. Evje, S., Flåtten, T.: On the wave structure of two-phase flow models. SIAM J. Appl. Math. 67(2), 487–511 (2007)

    Article  MathSciNet  Google Scholar 

  18. Evje, S., Karlsen, K.H.: Global existence of weak solutions for a viscous two-phase model. J. Differ. Equ. 245(9), 2660–2703 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  19. Zeidan, D., Sekhar, T.R.: On the wave interactions in the drift-flux equations of two-phase flows. J. Appl. Math. Comput. 327, 117–131 (2018)

    Article  MathSciNet  Google Scholar 

  20. Ruan, L., Wang, D., Weng, S., Zhu, C.: Rectilinear vortex sheets of inviscid liquid-gas two-phase flow: linear stability. Commun. Math. Sci. 14(3), 735–776 (2016)

    Article  MathSciNet  Google Scholar 

  21. Stevanovic, V.D., Hrnjak, P.: Numerical simulation of Three dimensional two-phase flow and prediction of oil retention in an evaporator of the automotive air conditioning system. Appl. Therm. Eng. 117, 468–480 (2017)

    Article  CAS  Google Scholar 

  22. Anjos, G.R., Mangiavacchi, N., Borhani, N., Thome, J.R.: 3D ALE finite-element method for two-phase flows with phase change. Heat Transf. Eng. 35, 537–547 (2014)

    Article  ADS  CAS  Google Scholar 

  23. Chaplygin, S.: On gas jets. Sci. Mem. Moscow Univ. Math. Phys. 21, 1–121 (1904)

    Google Scholar 

  24. Tsien, H.: Two-dimensional subsonic flow of compressible fluids. J. Spacecr. Rockets. 40(6), 983–991 (2003)

    Article  ADS  Google Scholar 

  25. von Karman, T.: Compressibility effects in aerodynamics. J. Spacecr. Rockets. 40(6), 992–1011 (2003)

    Article  ADS  Google Scholar 

  26. Wang, G.: The Riemann problem for one dimensional generalized Chaplygin gas dynamics. J. Math. Anal. Appl. 403, 434–450 (2013)

    Article  MathSciNet  Google Scholar 

  27. Kamenshchik, A.Y., Moschella, U., Pasquier, V.: An Alternative to quintessence. Phys. Lett. B 511, 265–268 (2001)

    Article  ADS  CAS  Google Scholar 

  28. Bento, M.C., Bertolami, O., Sen, A.A.: Letter: Generalized Chaplygin gas model: dark energy-dark matter unification and CMBR constraints. Gen. Relativ Gravit. 35, 2063–2069 (2003)

    Article  ADS  Google Scholar 

  29. Xu, L., Wang, Y., Noh, H.: Modified Chaplygin gas as a unified dark matter and dark energy model and cosmic constraints. Eur. Phys. J. C 72, 1931 (2012)

    Article  ADS  Google Scholar 

  30. Xu, L., Lu, J., Wang, Y.: Revisiting generalized Chaplygin gas as a unified dark matter and dark energy model. Eur. Phys. J. C 72, 1883 (2012)

    Article  ADS  Google Scholar 

  31. Gorini, V., Kamenshchik, A.Y., Moschella, U., Piattella, O.F., Starobinsky, A.A.: Gauge-invariant analysis of perturbations in Chaplygin gas unified models of dark matter and dark energy. J. Cosmol. Astropart. Phys. 02, 016 (2008)

    Article  ADS  Google Scholar 

  32. Comelli, D., Pietroni, M., Riotto, A.: Dark energy and dark matter. Phys. Lett. B 571(3–4), 115–120 (2003)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  33. Bento, M.C., Bertolami, O., Sen, A.: Generalized Chaplygin gas, accelerated expansion, and dark-energy-matter unification. Phys. Rev. D. 66(4), 043507 (2002)

    Article  ADS  Google Scholar 

  34. Makler, M., Quinet de Oliveira, S., Waga, I.: Constraints on the generalized Chaplygin gas from supernovae observations. Phys. Lett. B 555(1), 1–6 (2003)

  35. Alcaniz, J., Jain, D., Dev, A.: High-redshift objects and the generalized Chaplygin gas. Phys. Rev. D 67(4), 043514 (2003)

    Article  ADS  Google Scholar 

  36. Cheung, K., Wong, S.: Finite-time blowup of smooth solutions for the relativistic generalized Chaplygin Euler equations. J. Math. Anal. Appl. 489(2), 124193 (2020)

    Article  MathSciNet  Google Scholar 

  37. Kong, D., Wei, C., Zhang, Q.: Formation and propagation of singularities in one-dimensional Chaplygin gas. J. Geom. Phys. 80, 58–70 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  38. Lv, P., Hu, Y.: Singularity for the one-dimensional rotating Euler equations of Chaplygin gases. Appl. Math. Lett. 138, 108511 (2023)

    Article  MathSciNet  Google Scholar 

  39. Li, J., Zhang, T., Zheng, Y.: Simple waves and a characteristic decomposition of the two dimensional compressible Euler equations. Commun. Math. Phys. 267(1), 1–12 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  40. Li, J., Zheng, Y.: Interaction of rarefaction waves of the two-dimensional self-similar Euler equations. Arch. Ration. Mech. Anal. 193, 623–657 (2009)

    Article  MathSciNet  Google Scholar 

  41. Lai, G., Zhu, M.: Formation of singularities of solutions to the compressible Euler equations for a Chaplygin gas. Appl. Math. Lett. 129, 107978 (2022)

    Article  MathSciNet  Google Scholar 

  42. Castro, Á., Córdoba, D., Gancedo, F.: Singularity formations for a surface wave model. Nonlinearity 23, 2835–2847 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  43. Frank, M., Pierre, R., et al.: On the implosion of a compressible fluid II: Singularity formation. Ann. Math. 196(2), 779–889 (2022)

    MathSciNet  Google Scholar 

  44. Alinhac, S.: Existence d’ondes de rarefaction pour des systems quasi-lineaires hyperboliques multidimensionnels. Commun. Partial. Differ. Equ. 14(2), 173–230 (1989)

    Article  Google Scholar 

  45. Alinhac, S.: Temps de vie des solutions régulières des équations d’Euler compressibles axisymétriques en dimension deux. Invent. Math. 111, 627–670 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  46. Chen, G.: Formation of singularity and smooth wave propagation for the non-isentropic compressible Euler equations. J. Hyperbolic Differ. Equ. 8(04), 671–690 (2011)

    Article  MathSciNet  Google Scholar 

  47. Chen, G., Pan, R., Zhu, S.: Singularity formation for the compressible Euler equations. SIAM J. Appl. Math. 49, 2591–2614 (2017)

    Article  MathSciNet  Google Scholar 

  48. John, F.: Formation of singularities in one-dimensional nonlinear waves propagation. Commun. Pure Appl. Math. 27, 377–405 (1974)

    Article  MathSciNet  Google Scholar 

  49. Lax, P.: Development of singularities of solutions of nonlinear hyperbolic partial differential equations. J. Math. Phys. 5(5), 611–613 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  50. Liu, T.: Development of singularities of solutions on nonlinear hyperbolic partial differential equations. J. Differ. Equ. 33(1), 92–111 (1979)

    Article  ADS  Google Scholar 

  51. Pan, R., Zhu, Y.: Sigularity formation for one dimensional full Euler equations. J. Differ. Equ. 261, 7132–7144 (2016)

    Article  ADS  Google Scholar 

  52. Sideris, T.: Formation of singularities in three-dimensional compressible fluids. Commun. Math. Phys. 101(4), 475–485 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  53. Zuber, N., Findlay, J.A.: Average volumetric concentration in two-phase flow systems. Heat Transf. Res. 83, 453–468 (1965)

    Article  Google Scholar 

  54. Zeidan, D., Jana, S., Kuila, S., Sekhar, T.: Solution to the Riemann problem for drift-flux model with modified Chaplygin two-phase flows. Int. J. Numer. Methods Fluids 95(2), 242–261 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  55. Li, T., Yu, W.: Boundary value problems for quasilinear hyperbolic systems. Duke University, Durham (1985)

    Google Scholar 

  56. Brenier, Y.: Solutions with concentration to the Riemann problem for one-dimensional Chaplygin gas equations. J. Math. Fluid Mech. 7, S326–S331 (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihui Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by National Natural Science Foundation of China (12161084, 11961063) the Natural Science Foundation of Xinjiang, PR China(2022D01E42), Xinjiang Key Laboratory of Applied Mathematics(XJDX1401).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Guo, L. Singularity for the Drift-Flux System of Two-Phase Flow with the Generalized Chaplygin Gas. Int J Theor Phys 63, 28 (2024). https://doi.org/10.1007/s10773-024-05550-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-024-05550-w

Keywords

Navigation