Skip to main content
Log in

Insights into Quantum Contextuality and Bell Nonclassicality: a Study on Random Pure Two-Qubit Systems

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We explore the relationship between Kochen-Specker quantum contextuality and Bell-nonclassicality for ensembles of two-qubit pure states. We present a comparative analysis showing that the violation of a noncontextuality inequality on a given quantum state reverberates on the Bell-nonclassicality of the considered state. In particular, we use suitable inequalities that are experimentally testable to detect quantum contextuality and nonlocality for systems in a Hilbert space of dimension \(\varvec{d}={\textbf {4}}\). While contextuality can be assessed on different degrees of freedom of the same particle, the violation of local realism requires parties spatially separated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bell, J.S.: On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 38, 447–452 (1966). https://doi.org/10.1103/RevModPhys.38.447

    Article  ADS  MathSciNet  CAS  Google Scholar 

  2. Kochen, S., Specker, E.P.: The problem of hidden variables in quantum mechanics. J. Math. Mech. 17(1), 59–87 (1967)

    MathSciNet  Google Scholar 

  3. Bell, J.S.: On the einstein podolsky rosen paradox. Phys. Physique Fizika 1, 195–200 (1964). https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195

    Article  MathSciNet  Google Scholar 

  4. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969). https://doi.org/10.1103/PhysRevLett.23.880

    Article  ADS  Google Scholar 

  5. Clauser, J.F., Horne, M.A.: Experimental consequences of objective local theories. Phys. Rev. D. 10, 526–535 (1974). https://doi.org/10.1103/PhysRevD.10.526

    Article  ADS  Google Scholar 

  6. Żukowski, M.: Brukner, Č: Bell’s theorem for general \(n\)-qubit states. Phys. Rev. Letters. 88(21), 210401 (2002). https://doi.org/10.1103/physrevlett.88.210401

    Article  ADS  MathSciNet  Google Scholar 

  7. Karczewski, M., Scala, G., Mandarino, A., Sainz, A.B., Żukowski, M.: Avenues to generalising Bell inequalities. J. Phys. A: Math. Theor. 55(38), 384011 (2022). https://doi.org/10.1088/1751-8121/ac8a28

  8. Bae, K., Son, W.: Generalized nonlocality criteria under the correlation symmetry. Phys. Rev. A 98(2), 022116 (2018). https://doi.org/10.1103/physreva.98.022116

    Article  ADS  CAS  Google Scholar 

  9. Cabello, A.: Experimentally testable state-independent quantum contextuality. Phys. Rev. Lett. 101, 210401 (2008). https://doi.org/10.1103/PhysRevLett.101.210401

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Klyachko, A.A., Can, M.A., Binicioğlu, S., Shumovsky, A.S.: Simple test for hidden variables in spin-1 systems. Phys. Rev. Lett. 101, 020403 (2008). https://doi.org/10.1103/PhysRevLett.101.020403

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  11. Primaatmaja, I.W., Goh, K.T., Tan, E.Y.-Z., Khoo, J.T.-F., Ghorai, S., Lim, C.C.-W.: Security of device-independent quantum key distribution protocols: a review. Quantum 7, 932 (2023)

    Article  Google Scholar 

  12. Budroni, C., Cabello, A., Gühne, O., Kleinmann, M., Larsson, J.-A.k.: Kochen-Specker contextuality. Rev. Mod. Phys. 94, 045007 (2022). https://doi.org/10.1103/RevModPhys.94.045007

  13. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991). https://doi.org/10.1103/PhysRevLett.67.661

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  14. Scala, G., Ghoreishi, S.A., Pawłowski, M.: Revisiting hyperbit limitations unveils quantum communication advantages. (2023). arXiv:2308.16114

  15. Pepe, F.V., Scala, G., Chilleri, G., Triggiani, D., Kim, Y.-H., Tamma, V.: Distance sensitivity of thermal light second-order interference beyond spatial coherence. Euro. Phys. J. Plus 137(6), (2022). https://doi.org/10.1140/epjp/s13360-022-02857-7

  16. Das, T., Karczewski, M., Mandarino, A., Markiewicz, M., Woloncewicz, B., Żukowski, M.: Wave-particle complementarity: detecting violation of local realism with photon-number resolving weak-field homodyne measurements. New J. Phys. 24(3), 033017 (2022). https://doi.org/10.1088/1367-2630/ac54c8

    Article  ADS  MathSciNet  Google Scholar 

  17. Das, T., Karczewski, M., Mandarino, A., Markiewicz, M., Woloncewicz, B., Żukowski, M.: Remarks about Bell-nonclassicality of a single photon. Phys. Lett. A 435, 128031 (2022). https://doi.org/10.1016/j.physleta.2022.128031

  18. Das, T., Karczewski, M., Mandarino, A., Markiewicz, M., Woloncewicz, B., Żukowski, M.: Can single photon excitation of two spatially separated modes lead to a violation of Bell inequality via weak-field homodyne measurements? New J. Phys. 23(7), 073042 (2021). https://doi.org/10.1088/1367-2630/ac0ffe

  19. Das, T., Karczewski, M., Mandarino, A., Markiewicz, M., Woloncewicz, B., Żukowski, M.: Comment on ‘single particle nonlocality with completely independent reference states’. New J. Phys. 24(3), 038001 (2022). https://doi.org/10.1088/1367-2630/ac55b1

    Article  ADS  Google Scholar 

  20. Catani, L., Leifer, M., Scala, G., Schmid, D., Spekkens, R.W.: What aspects of the phenomenology of interference witness nonclassicality? (2022). arXiv:2211.09850

  21. Catani, L., Leifer, M., Scala, G., Schmid, D., Spekkens, R.W.: What is nonclassical about uncertainty relations? Phys. Rev. Lett. 129(24), (2022). https://doi.org/10.1103/physrevlett.129.240401

  22. Cabello, A.: Converting contextuality into nonlocality. Phys. Rev. Lett. 127, 070401 (2021). https://doi.org/10.1103/PhysRevLett.127.070401

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  23. Conway, J., Kochen, S.: The free will theorem. Found. Phys. 36, 1441–1473 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  24. Peres, A.: Incompatible results of quantum measurements. Phys. Lett. A 151(3–4), 107–108 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  25. Mermin, N.D.: Simple unified form for the major no-hidden-variables theorems. Phys. Rev. Lett. 65, 3373–3376 (1990). https://doi.org/10.1103/PhysRevLett.65.3373

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  26. Peres, A.: Two simple proofs of the Kochen-Specker theorem. J. Phys. A: Math. Gen. 24(4), 175 (1991)

  27. Peres, A.: Recursive definition for elements of reality. Found. Phys. 22, 357–361 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  28. Simon, C., Żukowski, M., Weinfurter, H., Zeilinger, A.: Feasible “Kochen-Specker” experiment with single particles. Phys. Rev. Lett. 85, 1783–1786 (2000). https://doi.org/10.1103/PhysRevLett.85.1783

  29. Amselem, E., Rådmark, M., Bourennane, M., Cabello, A.: State-independent quantum contextuality with single photons. Phys. Rev. Lett. 103, 160405 (2009). https://doi.org/10.1103/PhysRevLett.103.160405

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Schlichtholz, K., Mandarino, A., Żukowski, M.: Bosonic fields in states with undefined particle numbers possess detectable non-contextuality features, plus more. New J. Phys. 24(10), 103003 (2022). https://doi.org/10.1088/1367-2630/ac0ffe

    Article  ADS  MathSciNet  CAS  Google Scholar 

  31. Nagali, E., D’Ambrosio, V., Sciarrino, F., Cabello, A.: Experimental observation of impossible-to-beat quantum advantage on a hybrid photonic system. Phys. Rev. Lett. 108, 090501 (2012). https://doi.org/10.1103/PhysRevLett.108.090501

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Cabello, A., García-Alcaine, G.: Proposed experimental tests of the Bell-Kochen-Specker theorem. Phys. Rev. Lett. 80, 1797–1799 (1998). https://doi.org/10.1103/PhysRevLett.80.1797

  33. Cabello, A., Filipp, S., Rauch, H., Hasegawa, Y.: Proposed experiment for testing quantum contextuality with neutrons. Phys. Rev. Lett. 100, 130404 (2008). https://doi.org/10.1103/PhysRevLett.100.130404

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Bartosik, H., Klepp, J., Schmitzer, C., Sponar, S., Cabello, A., Rauch, H., Hasegawa, Y.: Experimental test of quantum contextuality in neutron interferometry. Phys. Rev. Lett. 103, 040403 (2009). https://doi.org/10.1103/PhysRevLett.103.040403

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Gigena, N., Scala, G., Mandarino, A.: Revisited aspects of the local set in CHSH Bell scenario. Int. J. Quantum Inf. 21, 2340005 (2023)

  36. Mandarino, A., Scala, G.: On the fidelity robustness of CHSH-Bell inequality via filtered random states. Entropy. 25(1), 94 (2023). https://doi.org/10.3390/e25010094

  37. Cirel’son, B.S.: Quantum generalizations of Bell’s inequality. Lett. Math. Phys. 4(2), 93–100 (1980). https://doi.org/10.1007/bf00417500

  38. Radtke, T., Fritzsche, S.: Simulation of n-qubit quantum systems. iv. parametrizations of quantum states, matrices and probability distributions. Comput. Phys. Commun. 179(9), 647–664 (2008)

  39. Zyczkowski, K., Kus, M.: Random unitary matrices. J. Phys. A: Math. Gen. 27(12), 4235 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  40. Cavalcanti, P.J., Scala, G., Mandarino, A., Lupo, C.: Information theoretical perspective on the method of entanglement witnesses. (2023). arXiv:2308.07744

  41. Das, T., Karczewski, M., Mandarino, A., Markiewicz, M., Żukowski, M.: Optimal interferometry for Bell nonclassicality induced by a vacuum-one-photon qubit. Phys. Rev. Appl. 18, 034074 (2022). https://doi.org/10.1103/PhysRevApplied.18.034074

  42. Gisin, N.: Bell’s inequality holds for all non-product states. Phys. Lett. A 154(5–6), 201–202 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  43. Mandarino, A., Bina, M., Porto, C., Cialdi, S., Olivares, S., Paris, M.G.A.: Assessing the significance of fidelity as a figure of merit in quantum state reconstruction of discrete and continuous-variable systems. Phys. Rev. A 93, 062118 (2016). https://doi.org/10.1103/PhysRevA.93.062118

    Article  ADS  CAS  Google Scholar 

  44. Kurzy ński, P., Cabello, A., Kaszlikowski, D.: Fundamental monogamy relation between contextuality and nonlocality. Phys. Rev. Lett. 112, 100401 (2014). https://doi.org/10.1103/PhysRevLett.112.100401

  45. Diker, F., Gedik, Z.: The degree of quantum contextuality in terms of concurrence for the KCBS scenario. Int. J. Theor. Phys. 61(11), (2022). https://doi.org/10.1007/s10773-022-05245-0

  46. D’Ambrosio, V., Herbauts, I., Amselem, E., Nagali, E., Bourennane, M., Sciarrino, F., Cabello, A.: Experimental implementation of a Kochen-Specker set of quantum tests. Phys. Rev. X 3, 011012 (2013). https://doi.org/10.1103/PhysRevX.3.011012

  47. Gonzales-Ureta, J.R., Predojevi ć, A., Cabello, A.: Optimal and tight Bell inequalities for state-independent contextuality sets. Phys. Rev. Res. 5, 012035 (2023). https://doi.org/10.1103/PhysRevResearch.5.L012035

Download references

Acknowledgements

GS is supported by QuantERA/2/2020, an ERA-Net co-fund in Quantum Technologies, under the eDICT project. AM is supported by Foundation for Polish Science (FNP), IRAP project ICTQT, contract no. 2018/MAB/5, co-financed by EU Smart Growth Operational Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Mandarino.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scala, G., Mandarino, A. Insights into Quantum Contextuality and Bell Nonclassicality: a Study on Random Pure Two-Qubit Systems. Int J Theor Phys 63, 17 (2024). https://doi.org/10.1007/s10773-023-05543-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05543-1

Keywords

Navigation