Skip to main content
Log in

Thermodynamic Performances of Coupled Autonomous Heat Devices: Insights from the Trade-off Optimization

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Performance optimization of heat devices is of great significance for the efficient utilization of energy. In the context of irreversible thermodynamics, the thermodynamic behaviors of coupled autonomous(CAU) heat engines(refrigerators) under the trade-off criterion are studied. The analytical formulas of power(cooling power) and efficiency [coefficient of performance(COP)] are not only formulated, but also the thermodynamic bounds of efficiency(COP) are presented. In the physically allowed space, optimal characteristics of CAU heat engines(refrigerators) are detailedly elucidated, and the energetic advantages of trade-off optimization are highlighted. Besides, when the temperature of the intermediate reservoir is set to be specific mean values of the hot and cold temperatures, both efficiency and COP are definitely given. These results have certain theoretical and practical significance for designing and manipulating real-life heat engines(refrigerators).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Vaudrey, A., Lanzetta, F., Feidt, M.: HB Reitlinger and the origins of the efficiency at maximum power formula for heat engines. J. Non-Equilib. Thermodyn. 39, 199–203 (2014)

    Article  ADS  Google Scholar 

  2. Curzon, F.L., Ahlborn, B.: Efficiency of a carnot engine at maximum power output. Am. J. Phys. 43, 22–24 (1975)

    Article  ADS  Google Scholar 

  3. Andresen, B.: Current trends in finite-time thermodynamics. Angew. Chem. Int. Ed. 50, 2690–2704 (2011)

    Article  CAS  Google Scholar 

  4. Andresen, B., Salamon, P.: Future perspectives of finite-time thermodynamics. Entropy 24, 690 (2022)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  5. Ma, Y.H., Dong, H., Sun, C.P.: Can we build a heat engine with both high power and high efficiency? The development and prospects of finite-time thermodynamics. Phys. Chin. 50, 1–9 (2021)

    Google Scholar 

  6. Ding, Z.M., Chen, L.G., Wang, W.H., Sun, F.R.: Progress in study on finite time thermodynamic performance optimization for three kinds of microscopic energy conversion systems. Sci. China-Phys. Mech. Astron. 45, 889–918 (2015)

    Google Scholar 

  7. Esposito, M., Kawai, R., Lindenberg, K., den Broeck, C.V.: Efficiency at maximum power of low-dissipation Carnot engines. Phys. Rev. Lett. 105, 150603 (2010)

    Article  ADS  PubMed  Google Scholar 

  8. den Broeck, C.V.: Thermodynamic efficiency at maximum power. Phys. Rev. Lett. 95, 190602 (2005)

    Article  PubMed  Google Scholar 

  9. de Cisneros, B.J., Arias-Hernandez, L.A., Heranadez, A.C.: Linear irreversible thermodynamics and coefficient of performance. Phys. Rev. E 73, 057103 (2006)

    Article  ADS  Google Scholar 

  10. Izumida, Y., Okuda, K., Roco, J.M.M., Hernandez, A.C.: Heat devices in nonlinear irreversible thermodynamics. Phys. Rev. E 91, 052140 (2015)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  11. Izumida, Y., Okuda, K.: Efficiency at maximum power of minimally nonlinear irreversible heat engines. Europhys. Lett. 97, 10004 (2012)

    Article  ADS  Google Scholar 

  12. Proesmans, K., Dreher, Y., Gavrilov, M., Bechhoefer, J., den Broeck, C.V.: Brownian duet: a novel tale of thermodynamic efficiency. Phys. Rev. X 6, 041010 (2016)

    Google Scholar 

  13. Malgaretti, P., Nowakowski, P., Stark, H.: Mechanical pressure and work cycle of confined active Brownian particles. Europhys. Lett. 134, 20002 (2021)

    Article  ADS  CAS  Google Scholar 

  14. Fang, X., Kruse, K., Lu, T., Wang, J.: Nonequilibrium physics in biology. Rev. Mod. Phys. 91, 045004 (2019)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  15. Mugnai, M.L., Hyeon, C., Hinczewski, M., Thirumalai, D.: Theoretical perspectives on biological machines. Rev. Mod. Phys. 92, 025001–1 (2020)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  16. Benenti, G., Casati, G., Saito, K., Whitney, R.S.: Fundamental aspects of steady-state conversion of heat to work at the nanoscale. Phys. Rep. 694, 1–124 (2017)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  17. Myers, N.M., Abah, O., Deffner, S.: Quantum thermodynamic devices: from theoretical proposals to experimental reality. AVS Quantum Sci. 4, 027101–1 (2022)

    Article  ADS  Google Scholar 

  18. Bhattacharjee, S., Dutta, A.: Quantum thermal machines and batteries. Eur. Phys. J. B 94, 239 (2021)

    Article  ADS  CAS  Google Scholar 

  19. Kosloff, R., Levy, A.: Quantum heat engines and refrigerators: continuous devices. Annu. Rev. Phys. Chem. 65, 365 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Wang, Y., Li, M., Tu, Z.C., Hernandez, A.C., Roco, J.M.M.: Coefficient of performance at maximum figure of merit and its bounds for low-dissipation Carnot-like refrigerators. Phys. Rev. E 86, 011127 (2012)

    Article  ADS  Google Scholar 

  21. Yan, Z., Chen, J.: A class of irreversible Carnot refrigeration cycles with a general heat transfer law. J. Phys. D: Appl. Phys. 23, 136–141 (1990)

    Article  ADS  Google Scholar 

  22. Angulo-Brown, F.: An ecological optimization criterion for finite-time heat engines. J. Appl. Phys. 69, 7465–7469 (1991)

    Article  ADS  Google Scholar 

  23. Chen, C.K., Chen, C.Y.: The ecological optimization of an irreversible Carnot heat engine. J. Phys. D: Appl. Phys. 30, 1602 (1997)

    Article  ADS  Google Scholar 

  24. Stucki, J.W.: The optimal efficiency and the economic degrees of coupling of oxidative phosphorylation. Eur. J. Biochem 109, 269–283 (1980)

    Article  CAS  PubMed  Google Scholar 

  25. Yilmaz, T., Durmusoglu, Y.: Efficient power analysis for an irreversible Carnot heat engine. Int. J. Energy Res. 32, 623–628 (2008)

    Article  Google Scholar 

  26. Yilmaz, T.: A new performance criterion for heat engines: efficient power. J. Energy Inst. 79, 38–41 (2006)

    Article  CAS  Google Scholar 

  27. Singh, V., Johal, R.S.: Low-dissipation Carnot-like heat engines at maximum efficient power. Phys. Rev. E 98, 062132 (2018)

    Article  ADS  Google Scholar 

  28. Ryabov, A., Holubec, V.: Maximum efficiency of steady-state heat engines at arbitrary power. Phys. Rev. E 93, 050101(R) (2016)

    Article  ADS  Google Scholar 

  29. Zhang, R., Li, Q.W., Tang, F.R., Yang, X.Q., Bai, L.: Route towards the optimization at given power of thermoelectric heat engines with broken time-reversal symmetry. Phys. Rev. E 96, 022133 (2017)

    Article  ADS  PubMed  Google Scholar 

  30. Hernandez, A.C., Medina, A., White, J.A., Velasco, S.: Unified optimization criterion for energy converters. Phys. Rev. E 63, 037102 (2001)

    Article  ADS  CAS  Google Scholar 

  31. de Tomas, C., Roco, J.M.M., Hernandez, A.C., Wang, Y., Tu, Z.C.: Low-dissipation heat devices: Unified trade-off optimization and bounds. Phys. Rev. E 87, 012105 (2013)

    Article  ADS  Google Scholar 

  32. Gonzalez-Ayala, J., Hernandez, A.C., Roco, J.M.M.: From maximum power to a trade-off optimization of low-dissipation heat engines: influence of control parameters and the role of entropy generation. Phys. Rev. E 95, 022131 (2017)

    Article  ADS  PubMed  Google Scholar 

  33. Apertet, Y., Ouerdane, H., Goupil, C., Lecoeur, P.: True nature of the Curzon-Ahlborn efficiency. Phys. Rev. E 96, 022119 (2017)

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Yan, Z.: Comment on “ An ecological optimization criterion for finitetime heat engines” [ J. Appl. Phys. 69, 7465 (1991)]. J. Appl. Phys. 73, 3583 (1993)

  35. Yan, Z.: Comment on “ A general property of endoreversible thermal engines” [J. Appl. Phys. 81, 2973(1997)]. J. Appl. Phys. 89, 1518–1519 (2001)

  36. Long, R., Liu, W.: Efficiency and its bounds of minimally nonlinear irreversible heat engines at arbitrary power. Phys. Rev. E 94, 052114 (2016)

    Article  ADS  PubMed  Google Scholar 

  37. Long, R., Liu, Z.C., Liu, W.: Performance optimization of minimally nonlinear irreversible heat engines and refrigerators under a trade-off figure of merit. Phys. Rev. E 89, 062119 (2014)

    Article  ADS  Google Scholar 

  38. Long, R., Liu, W.: Unified trade-off optimization for general heat devices with nonisothermal processes. Phys. Rev. E 91, 042127 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  39. Kaur, K., Singh, V., Ghai, J., Jena, S., Mustecaplioğlu, Ö.E.: Unified trade-off optimization of a three-level quantum refrigerator. Phys. A: Stat. Mech. Appl. 576, 125892 (2021)

    Article  Google Scholar 

  40. Harman, T.C.: Multiple stage thermoelectric generation of power. J. Appl. Phys. 29, 1471–1473 (1958)

    Article  ADS  Google Scholar 

  41. Apertet, Y., Ouerdane, H., Goupil, C., Lecoeur, P.: Efficiency at maximum power of thermally coupled heat engines. Phys. Rev. E 85, 041144 (2012)

    Article  ADS  CAS  Google Scholar 

  42. Khlifi, Y., Seddik, S., ElAllati, A.: Steady state entanglement behavior between two quantum refrigerators. Phys. A: Stat. Mech. Appl. 596, 127199 (2022)

    Article  MathSciNet  Google Scholar 

  43. Ye, Z.L., Holubec, V.: Maximum efficiency of absorption refrigerators at arbitrary cooling power. Phys. Rev. E 103, 052125 (2021)

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  44. Johal, R.S., Rai, R.: Efficiency at optimal performance: a unified perspective based on coupled autonomous thermal machines. Phys. Rev. E 105, 044145 (2022)

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  45. Singh, V., Johal, R.S.: Feynman-Smoluchowski engine at high temperatures and the role of constraints. J. Stat. Mech. 2018, 073205 (2018)

    Article  MathSciNet  Google Scholar 

  46. Chen, L., Yan, Z.: The effect of heat-transfer law on performance of a two-heat-source endoreversible cycle. J. Chem. Phys. 90, 3740 (1989)

    Article  ADS  Google Scholar 

  47. den Broeck, C.V.: Efficiency at maximum power in the lowdissipation limit. Europhys. Lett. 101, 10006 (2013)

    Article  Google Scholar 

  48. Tu, Z.C.: Efficiency at maximum power of Feynman’s ratchet as a heat engine. J. Phys. A: Math. Theor. 41, 312003 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  49. den Broeck, C.V., Findenberg, K.: Efficiency at maximum power for classical particle transport. Phys. Rev. E 86, 041144 (2012)

    Article  ADS  Google Scholar 

  50. Cavina, V., Mari, A., Giovannetti, V.: Slow dynamics and thermodynamics of open quantum systems. Phys. Rev. Lett. 119, 050601 (2017)

    Article  ADS  PubMed  Google Scholar 

Download references

Funding

This work is financially supported by the Fundamental Research Funds for the Central Universities (Grant No. 2020ZDPYMS32).

Author information

Authors and Affiliations

Authors

Contributions

L.B. and L.Z. conducted the calculations and the processing of the results. R.Z. provided the useful analysis and wrote the manuscript.

Corresponding author

Correspondence to Rong Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

Not applicable

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, L., Zhang, L. & Zhang, R. Thermodynamic Performances of Coupled Autonomous Heat Devices: Insights from the Trade-off Optimization. Int J Theor Phys 63, 13 (2024). https://doi.org/10.1007/s10773-023-05541-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05541-3

Keywords

Navigation