Skip to main content
Log in

Classical and Quantum Mechanics of the Wien Velocity Filter

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Classical and quantum theories of the Wien velocity filter are presented. The classical theory is based on the beam optical Hamiltonian and the Lie operator method, which readily leads to the results obtained through the widely used differential equations approach. So far, the quantum mechanics of the Wien filter has not been studied. We explain the quantum mechanics of the Wien filter based on the Dirac equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The authors declare No data were generated or analyzed in the presented research.

References

  1. Orloff, J. (ed.): Handbook of charged particle optics, CRC Press (2017). https://doi.org/10.1201/9781420045550

  2. Tsuno, K., Ioanoviciu, D.: Early history of Wien filters, In: Tsuno, K., Ioanoviciu, D. (eds.), Advances in Imaging and Electron Physics, Vol.176, pp. 1–6. Elsevier (2013). https://doi.org/10.1016/B978-0-12-408142-0.00001-8

  3. Ioanoviciu, D., Tsuno, K.: Aberration theory of the Wien filter, In: Tsuno, K., Ioanoviciu, D. (eds.), Advances in Imaging and Electron Physics, Vol.176, pp. 7-104. Elsevier (2013). https://doi.org/10.1016/B978-0-12-408142-0.00002-X

  4. Hurd, J.W.: Derivation of the first-order transformation matrix for a simple Wien filter and comparison to results of numerical integration. Nucl. Instr. Meth. Phys. Res. A 258, 542–547 (1987). https://doi.org/10.1016/0168-9002(87)90938-7

    Article  ADS  Google Scholar 

  5. Kern, F., Krehl, J., Thampi, A., Lubk, K.: A Hamiltonian mechanics framework for charge particle optics in straight and curved systems. Optik 242, 167242 (2021) https://doi.org/10.1016/j.ijleo.2021.167242

  6. Botman, J.I.M., Hagedoorn, H.L.: Hamiltonian description of ion motion in crossed electric and magnetic fields with cylindrical symmetry. Nucl. Instr. Meth. Phys. Res. B 64, 353–357 (1992). https://doi.org/10.1016/0168-583X(92)95493-B

    Article  ADS  Google Scholar 

  7. Jagannathan, R., Simon, R., Sudarshan, E.C.G., Mukunda, N.: Quantum theory of magnetic electron lenses based on the Dirac equation. Phys. Lett. A 134, 457–464 (1989). https://doi.org/10.1016/0375-9601(89)90685-3

    Article  MathSciNet  ADS  Google Scholar 

  8. Jagannathan, R.: Quantum theory of electron lenses based on the Dirac equation. Phys. Rev. A 42, 6674–6689 (1990). https://doi.org/10.1103/PhysRevA.42.6674

    Article  CAS  PubMed  ADS  Google Scholar 

  9. Khan, S.A., Jagannathan, R.: Quantum mechanics of charged particle beam transport through magnetic lenses. Phys. Rev. E 51, 2510–2515 (1995). https://doi.org/10.1103/PhysRevE.51.2510

    Article  CAS  ADS  Google Scholar 

  10. Jagannathan, R., Khan, S.A.: Quantum theory of the optics of charged particles. In: Hawkes, P.W. (ed.), Advances in Imaging and Electron Physics, Vol. 97, pp. 257–358, Academic Press (1996) https://doi.org/10.1016/S1076-5670(08)70096-X

  11. Conte, M., Jagannathan, R., Khan, S.A., Pusterla, M.: Beam optics of the Dirac particle with anomalous magnetic moment. Particle Accelerators 56, 99–126 (1996) http://cds.cern.ch/record/307931/files/p99.pdf

  12. Khan, S.A.: Quantum Theory of Charged-Particle Beam Optics, PhD Thesis, University of Madras, Chennai, India, 1997, Complete thesis available from Dspace of IMSc Library, The Institute of Mathematical Sciences, Chennai, India, where the doctoral research was done. http://www.imsc.res.in/xmlui/handle/123456789/75

  13. Jagannathan, R.: The Dirac equation approach to spin-\(\frac{1}{2}\) particle beam optics. In: Chen, P. (ed.), Proceedings of the 15th Advanced ICFA Beam Dynamics Workshop on Quantum Aspects of Beam Physics, Monterey, California, USA, 1998, pp. 670-681, World Scientific (1999)

  14. Khan, S.A.: Quantum theory of magnetic quadrupole lenses for spin-\(\frac{1}{2}\) particles. In: Chen, P. (ed.), Proceedings of the 15th Advanced ICFA Beam Dynamics Workshop on Quantum Aspects of Beam Physics, Monterey, California, USA, 1998, pp. 682-694, World Scientific (1999)

  15. Khan, S.A.: Quantum aspects of accelerator optics. In: A. Luccio, W. MacKay (eds.), Proceedings of the 1999 Particle Accelerator Conference (PAC99), New York, 1999, pp. 2817–2819, https://doi.org/10.1109/PAC.1999.792948

  16. Jagannathan, R.: Quantum mechanics of Dirac particle beam optics: Single-particle theory. In: P. Chen (ed.), Proceedings of the 18th Advanced ICFA Beam Dynamics Workshop on Quantum Aspects of Beam Physics, Capri, Italy, 2000, pp. 568–577, World Scientific (2002). https://doi.org/10.1142/9789812777447_0047

  17. Khan, S.A.: Quantum formalism of beam optics. In: Chen, P. (ed.), Proceedings of the 18th Advanced ICFA Beam Dynamics Workshop on Quantum Aspects of Beam Physics, Capri, Italy, 2000, pp. 517–526, World Scientific (2002). https://doi.org/10.1142/9789812777447_0042

  18. Jagannathan, R.: Quantum mechanics of Dirac particle beam transport through optical elements with straight and curved axes. In: Chen, P., Reil, K. (eds.) Proceedings of the 28th Advanced ICFA Beam Dynamics and Advanced & Novel Accelerators Workshop, Hiroshima, Japan, 2003, pp. 13-21, World scientific (2004) https://doi.org/10.1142/9789812702333_0002

  19. Khan, S.A.: Quantum aspects of charged particle beam optics. In: Al-Kamli, A., Can, N., Souadi, G.O., Fadhali, M., Mahdy, A., Mahgoub, M. (eds.), Proceedings of the 5th Saudi International Meeting on Frontiers of Physics - 2016 (SIMFP 2016), Gizan, Saudi Arabia, AIP Conference Proceedings, 1742 (2016) pp. 030008-1–030008-4, https://doi.org/10.1063/1.4953129

  20. Khan, S.A.: E.C.G. Sudarshan and the quantum mechanics of charged-particle beam optics. Curr. Sci. 115, 1813–1814 (2018) http://www.currentscience.ac.in/Volumes/115/09/1813.pdf

  21. Khan, S.A., Jagannathan, R.: Quantum mechanics of bending of a nonrelativistic charged particle beam by a dipole magnet. Optik 206, 163626 (2020). https://doi.org/10.1016/j.ijleo.2019.163626

    Article  ADS  Google Scholar 

  22. Khan, S.A., Jagannathan, R.: Quantum mechanics of round magnetic electron lenses with Glaser and power law models of \(B(z)\). Optik 229, 166303 (2021). https://doi.org/10.1016/j.ijleo.2021.166303

    Article  ADS  Google Scholar 

  23. Jagannathan, R., Khan, S.A.: Quantum Mechanics of Charged Particle Beam Optics: Understanding Devices from Electron Microscopes to Particle Accelerators. Taylor & Francis (2019). https://doi.org/10.1201/9781315232515

    Article  Google Scholar 

  24. Hawkes, P.W., Kasper, E.: Principles of Electron Optics - Vol.3: Fundamental Wave Optics, 2nd Edn., Elsevier (2022)

  25. Wiedemann, H.: Particle Accelerator Physics, 4th Edn., Springer (2015)

  26. Wolski, A.: Beam Dynamics in High Energy Particle Accelerators, Imperial College Press (2014)

  27. Hawkes, P.W., Kasper, E.: Principles of Electron Optics - Vol.1: Basic Geometrical Optics, 2nd Edn., Elsevier (2017)

  28. Bjorken, J.D., Drell, S.D.: Relativistic Quantum Mechanics, McGraw-Hill (1994)

  29. Greiner, W.: Relativistic Quantum Mechanics: Wave Equations, 3rd Edn., Springer (2000)

  30. Thaller, B.: The Dirac Equation, Springer (1992)

  31. Fishman, L.: One-way wave equation modeling in two-way wave propagation problems. In: Nilsson, B., Fishman, L. (eds.) Mathematical Modelling of Wave Phenomena 2002, Mathematical Modelling in Physics, Engineering, and Cognitive Sciences. Växjö University Press, vol. 7, pp. 91–111. Växjö, Sweden (2004)

  32. Khan, S.A., Jagannathan, R., Simon, R.: Foldy-Wouthuysen transformation and a quasiparaxial approximation scheme for the scalar wave theory of light beams. arXiv:physics/0209082 [physics.optics]. http://arXiv.org/abs/physics/0209082

  33. Khan, S.A.: The Foldy-Wouthuysen transformation technique in optics. Optik 117, 481–488 (2006). https://doi.org/10.1016/j.ijleo.2005.11.010

    Article  ADS  Google Scholar 

  34. Khan, S.A.: The Foldy-Wouthuysen transformation technique in optics. In: Hawkes, P.W. (ed.), Advances in Imaging and Electron Physics, Vol.152, pp. 49-78, Academic Press (2008). https://doi.org/10.1016/S1076-5670(08)00602-2

  35. Khan, S.A.: Quantum methodologies in Helmholtz optics. Optik 127, 9798–9809 (2016). https://doi.org/10.1016/j.ijleo.2016.07.071

    Article  CAS  ADS  Google Scholar 

  36. Khan, S.A.: Linearization of wave equations. Optik 131, 350–363 (2017). https://doi.org/10.1016/j.ijleo.2016.11.073

    Article  ADS  Google Scholar 

  37. Khan, S.A.: Passage from scalar to vector optics and the Mukunda-Simon-Sudarshan theory for paraxial systems. J. Mod. Opt. 63, 1652–1660 (2016). https://doi.org/10.1080/09500340.2016.1164257

    Article  ADS  Google Scholar 

  38. Khan, S.A.: Quantum methods in light beam optics. Optics Photonics News 27, 47 (2016). https://doi.org/10.1364/OPN.27.12.000047 and https://www.optica-opn.org/home/articles/volume_27/december_2016/features/optics_in_2016/

  39. Khan, S.A.: Aberrations in Helmholtz optics. Optik 153, 164–181 (2018). https://doi.org/10.1016/j.ijleo.2017.10.006

    Article  ADS  Google Scholar 

  40. Khan, S.A.: Quantum mechanical techniques in light beam optics. Front. Optics, JTu1B.39 (2020). https://doi.org/10.1364/FIO.2020.JTu1B.39

  41. Khan, S.A.: Cross polarization in Gaussian light beams. Frontiers in Optics, JW7A.53 (2021). https://doi.org/10.1364/FIO.2021.JW7A.53

  42. Khan, S.A.: Cross Polarization in Bessel Light Beams. Frontiers in Optics, JW4B.65 (2022). https://doi.org/10.1364/FIO.2022.JW4B.65

  43. Khan, S.A.: Cross Polarization in Gaussian and Bessel Light Beams. Opt. Commun. 545, 129728 (2023). https://doi.org/10.1016/j.optcom.2023.129728

    Article  CAS  Google Scholar 

  44. Khan, S.A.: An exact matrix representation of Maxwell’s equations. Phys. Scr. 71, 440–442 (2005). https://doi.org/10.1238/Physica.Regular.071a00440

    Article  MathSciNet  CAS  ADS  Google Scholar 

  45. Khan, S.A., Jagannathan, R.: A new matrix representation of the Maxwell equations based on the Riemann-Silberstein-Weber vector for a linear inhomogeneous medium. arXiv:2205.09907 math-ph

  46. Khan, S.A.: Hamilton’s optical-mechanical analogy in the wavelength-dependent regime. Optik 130, 714–722 (2017). https://doi.org/10.1016/j.ijleo.2016.07.071

    Article  CAS  ADS  Google Scholar 

  47. Hawkes, P.W.: Dirac, c and a supper date. Ultramicroscopy 213, 112981 (2020). https://doi.org/10.1016/j.ultramic.2020.112981

    Article  CAS  Google Scholar 

  48. Nicklaus, M., Hasselbach, F.: Wien filter: A wave-packet-shifting device for restoring longitudinal coherence in charged-matter-wave interferometers. Phys. Rev. A 48, 152–160 (1993). https://doi.org/10.1103/PhysRevA.48.152

    Article  CAS  PubMed  ADS  Google Scholar 

  49. Hasselbach, F., Kiesel, H., Sonnentag, P.: Exploration of the Fundamentals of Quantum Mechanics by Charged Particle Interferometry. In: Blanchard, P. et al. (eds) Decoherence: Theoretical, Experimental, and Conceptual Problems. Lecture Notes in Physics, Vol.538, pp.201-212. Springer (2000) https://doi.org/10.1007/3-540-46657-6_16

  50. Röpke, R., Kerket, N., Stibor, A.: Data transmission by quantum matter wave modulation. New J. Phys. 23, 023038 (2021). https://doi.org/10.1088/1367-2630/abe15f

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the reviewer for comments leading to improvement of the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sameen Ahmed Khan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, S.A., Jagannathan, R. Classical and Quantum Mechanics of the Wien Velocity Filter. Int J Theor Phys 63, 16 (2024). https://doi.org/10.1007/s10773-023-05530-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05530-6

Keywords

Navigation