Skip to main content
Log in

Nonlinear Superposition Between Lump Waves and Other Nonlinear Waves of the (2+1)-Dimensional Extended Korteweg-De Vries Equation

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this study, we consider an extended (2+1)-dimensional KdV equation, which is used to simulate the propagation and evolution of nonlinear waves. Based on the N-soliton solutions, a new constraint is imposed on the parameters, and the novel nonlinear superposition for the lump wave with solitons, breathers of the equation are studied by combining the long wave limit and the complex conjugate of the parameters. Furthermore, with the aid of the velocity resonance method, the lump-soliton molecule and the interaction solution of the molecule and soliton are obtained. The physical dynamics of these solutions are illustrated in the form of graphical illustrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

No data were used in this study

References

  1. Seadawy, A.R., Nasreen, N., Lu, D.: Complex model ultra-short pulses in optical fibers via generalized third-order nonlinear schrödinger dynamical equation. Int. J. Mod. Phys. B 34(17), 2050143 (2020). https://doi.org/10.1142/S021797922050143X

    Article  ADS  Google Scholar 

  2. Tang, L.: Bifurcation analysis and optical soliton solutions for the fractional complex ginzburg–landau equation in communication systems. Optik 276, 170639 (2023). https://doi.org/10.1016/j.ijleo.2023.170639

  3. Nasreen, N., Seadawy, A.R., Lu, D., Arshad, M.: Optical fibers to model pulses of ultrashort via generalized third-order nonlinear schrödinger equation by using extended and modified rational expansion method. J. Nonlinear Opt. Phys. Mater., 2350058 (2023). https://doi.org/10.1142/S0218863523500583

  4. Nasreen, N., Lu, D., Zhang, Z., Akgül, A., Younas, U., Nasreen, S., Al-Ahmadi, A.N.: Propagation of optical pulses in fiber optics modelled by coupled space-time fractional dynamical system. Alexandria Eng. J. 73, 173–187 (2023). https://doi.org/10.1016/j.aej.2023.04.046

    Article  Google Scholar 

  5. Helal, M.: Soliton solution of some nonlinear partial differential equations and its applications in fluid mechanics. Chaos, Solitons & Fractals 13(9), 1917–1929 (2002). https://doi.org/10.1016/S0960-0779(01)00189-8

    Article  ADS  MathSciNet  Google Scholar 

  6. Ali, U., Ahmad, H., Abu-Zinadah, H.: Soliton solutions for nonlinear variable-order fractional korteweg–de vries (kdv) equation arising in shallow water waves. J Ocean Eng Sci. (2022). https://doi.org/10.1016/j.joes.2022.06.011

  7. Wang, K., Wei, C.: Fractal soliton solutions for the fractal-fractional shallow water wave equation arising in ocean engineering. Alexandria Eng. J. 65, 859–865 (2023). https://doi.org/10.1016/j.aej.2022.10.024

    Article  Google Scholar 

  8. Korteweg, D.J., De Vries, G.: Xli. on the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 39(240), 422–443 (1895). https://doi.org/10.1080/14786449508620739

  9. Hussain, S., Mahmood, S.: Korteweg-de vries burgers equation for magnetosonic wave in plasma. Phys. Plasmas 18(5) (2011). https://doi.org/10.1016/0375-9601(96)00473-2

  10. Bulut, H., Sulaiman, T.A., Baskonus, H.M., Sandulyak, A.A.: New solitary and optical wave structures to the (1+ 1)-dimensional combined kdv–mkdv equation. Optik 135, 327–336 (2017). https://doi.org/10.1016/j.ijleo.2017.01.071

  11. Alquran, M.: Optical bidirectional wave-solutions to new two-mode extension of the coupled kdv–schrodinger equations. Opt. Quantum Electron. 53(10), 588 (2021). https://doi.org/10.1007/s11082-021-03245-8

  12. Boiti, M., Leon, J.-P., Manna, M., Pempinelli, F.: On the spectral transform of a korteweg-de vries equation in two spatial dimensions. Inverse Prob. 2(3), 271 (1986). https://doi.org/10.1088/0266-5611/2/3/005

    Article  ADS  MathSciNet  Google Scholar 

  13. Li, B.-Q., Ma, Y.-L.: Multiple-lump waves for a (3+ 1)-dimensional boiti–leon–manna–pempinelli equation arising from incompressible fluid. Comput. Math. Appl. 76(1), 204–214 (2018). https://doi.org/10.1016/j.camwa.2018.04.015

  14. Liu, J.-G., Tian, Y., Hu, J.-G.: New non-traveling wave solutions for the (3+ 1)-dimensional boiti–leon–manna–pempinelli equation. Appl. Math. Lett. 79, 162–168 (2018). https://doi.org/10.1016/j.aml.2017.12.011

  15. Hu, L., Gao, Y.-T., Jia, S.-L., Su, J.-J., Deng, G.-F.: Solitons for the (2+ 1)-dimensional boiti–leon–manna–pempinelli equation for an irrotational incompressible fluid via the pfaffian technique. Mod. Phys. Lett. B 33(30), 1950376 (2019). https://doi.org/10.1142/S0217984919503767

  16. Wang, B., Ma, Z., Xiong, S.: M-lump, rogue waves, breather waves, and interaction solutions among four nonlinear waves to new (3+ 1)- dimensional hirota bilinear equation. Nonlinear Dyn. 111(10), 9477–9494 (2023). https://doi.org/10.1007/s11071-023-08338-5

    Article  Google Scholar 

  17. Zhao, Z., He, L.: M-lump and hybrid solutions of a generalized (2+ 1)-dimensional hirota-satsuma-ito equation. Appl. Math. Lett. 111, 106612 (2021). https://doi.org/10.1016/j.aml.2020.106612

    Article  MathSciNet  Google Scholar 

  18. Zhong, J., Tian, L., Wang, B., Ma, Z.: Dynamics of nonlinear dark waves and multi-dark wave interactions for a new extended (3+ 1)-dimensional kadomtsev–petviashvili equation. Nonlinear Dyn. 1–23 (2023). https://doi.org/10.1007/s11071-023-08784-1

  19. Wang, B., Ma, Z., Liu, X.: Dynamics of nonlinear wave and interaction phenomenon in the (3+ 1)-dimensional hirota–satsuma–ito-like equation. Eur. Phys. J. D 76(9), 165 (2022). https://doi.org/10.1140/epjd/s10053-022-00493-5

  20. Akram, G., Sadaf, M., Khan, M.A.U.: Soliton solutions of the resonant nonlinear schrödinger equation using modified auxiliary equation method with three different nonlinearities. Math. Comput. Simulat. 206, 1–20 (2023). https://doi.org/10.1080/09500340.2013.850777

  21. Wu, X.-H., Gao, Y.-T., Yu, X., Ding, C.-C., Li, L.-Q.: Modified generalized darboux transformation and solitons for a lakshmanan-porsezian-daniel equation. Chaos, Solitons & Fractals 162, 112399 (2022). https://doi.org/10.1016/j.chaos.2022.112399

    Article  MathSciNet  Google Scholar 

  22. Zhang, R.-F., Bilige, S.: Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to p-gbkp equation. Nonlinear Dyn. 95, 3041–3048 (2019). https://doi.org/10.1007/s11071-018-04739-z

    Article  Google Scholar 

  23. Zhang, R.-F., Li, M.-C., Gan, J.-Y., Li, Q., Lan, Z.-Z.: Novel trial functions and rogue waves of generalized breaking soliton equation via bilinear neural network method. Chaos, Solitons & Fractals 154, 111692 (2022). https://doi.org/10.1016/j.chaos.2021.111692

    Article  MathSciNet  Google Scholar 

  24. Liu, J.-G., Zhu, W.-H., Wu, Y.-K., Jin, G.-H.: Application of multivariate bilinear neural network method to fractional partial differential equations. Results Phys. 47, 106341 (2023). https://doi.org/10.1016/j.rinp.2023.106341

    Article  Google Scholar 

  25. Zhang, R.-F., Li, M.-C., Albishari, M., Zheng, F.-C., Lan, Z.-Z.: Generalized lump solutions, classical lump solutions and rogue waves of the (2+1)-dimensional caudrey-dodd-gibbon-kotera-sawada-like equation. Appl. Math. Comput. 403, 126201 (2021). https://doi.org/10.1016/j.amc.2021.126201

    Article  MathSciNet  Google Scholar 

  26. Yan, Z., Lou, S.: Soliton molecules in sharma–tasso–olver–burgers equation. Appl. Math. Lett. 104, 106271 (2020). https://doi.org/10.1016/j.aml.2020.106271

  27. Yin, Y.-H., Lü, X., Ma, W.-X.: Bäcklund transformation, exact solutions and diverse interaction phenomena to a (3+ 1)-dimensional nonlinear evolution equation. Nonlinear Dyn. 108(4), 4181–4194 (2022). https://doi.org/10.1007/s11071-021-06531-y

    Article  Google Scholar 

  28. Ablowitz, M., Satsuma, J.: Solitons and rational solutions of nonlinear evolution equations. J. Math. Phys. 19(10), 2180–2186 (1978). https://doi.org/10.1063/1.523550

    Article  ADS  MathSciNet  Google Scholar 

  29. Satsuma, J., Ablowitz, M.: Two-dimensional lumps in nonlinear dispersive systems. J. Math. Phys. 20(7), 1496–1503 (1979). https://doi.org/10.1063/1.524208

    Article  ADS  MathSciNet  Google Scholar 

  30. Ma, W.-X., Zhou, Y.: Lump solutions to nonlinear partial differential equations via hirota bilinear forms. J. Differ. Equations. 264(4), 2633–2659 (2018). https://doi.org/10.1016/j.jde.2017.10.033

    Article  ADS  MathSciNet  Google Scholar 

  31. Lou, S.-Y.: Soliton molecules and asymmetric solitons in three fifth order systems via velocity resonance. J. Phys. Commun. 4(4), 041002 (2020). https://doi.org/10.1088/2399-6528/ab833e

    Article  Google Scholar 

  32. Liu, J.-G., Zhu, W.-H., He, Y.: Variable-coefficient symbolic computation approach for finding multiple rogue wave solutions of nonlinear system with variable coefficients. Z. Angew. Math. Phys. 72(4), 154 (2021). https://doi.org/10.1007/s00033-021-01584-w

    Article  ADS  MathSciNet  Google Scholar 

  33. Liu, J.-G., Ye, Q.: Stripe solitons and lump solutions for a generalized kadomtsev–petviashvili equation with variable coefficients in fluid mechanics. Nonlinear Dyn. 96, 23–29 (2019). https://doi.org/10.1007/s11071-019-04770-8

  34. Liu, J.-G., Wazwaz, A.-M., Zhu, W.-H.: Solitary and lump waves interaction in variable-coefficient nonlinear evolution equation by a modified ansätz with variable coefficients. J. Appl. Anal. Comput 12(2), 517–532 (2022). https://doi.org/10.11948/20210178

  35. Alquran, M., Alhami, R.: Analysis of lumps, single-stripe, breather-wave, and two-wave solutions to the generalized perturbed-kdv equation by means of hirota’s bilinear method. Nonlinear Dyn. 109(3), 1985–1992 (2022). https://doi.org/10.1007/s11071-022-07509-0

  36. Liu, J.-G., Zhu, W.-H.: Multiple rogue wave, breather wave and interaction solutions of a generalized (3+ 1)-dimensional variable-coefficient nonlinear wave equation. Nonlinear Dyn. 103(2), 1841–1850 (2021). https://doi.org/10.1007/s11071-020-06186-1

    Article  Google Scholar 

  37. Ismael, H.F., Younas, U., Sulaiman, T.A., Nasreen, N., Shah, N.A., Ali, M.R.: Non classical interaction aspects to a nonlinear physical model. Results Phys. 49, 106520 (2023). https://doi.org/10.1016/j.rinp.2023.106520

    Article  Google Scholar 

  38. Nasreen, N., Younas, U., Sulaiman, T., Zhang, Z., Lu, D.: A variety of m-truncated optical solitons to a nonlinear extended classical dynamical model. Results Phys. 51, 106722 (2023). https://doi.org/10.1016/j.rinp.2023.106722

    Article  Google Scholar 

  39. Nasreen, N., Younas, U., Lu, D., Zhang, Z., Rezazadeh, H., Hosseinzadeh, M.: Propagation of solitary and periodic waves to conformable ion sound and langmuir waves dynamical system. Opt. Quantum Electron. 55(10), 868 (2023). https://doi.org/10.1007/s11082-023-05102-2

    Article  Google Scholar 

  40. Nasreen, N., Rafiq, M.N., Younas, U., Lu, D.: Sensitivity analysis and solitary wave solutions to the (2+ 1)-dimensional boussinesq equation in dispersive media. Mod. Phys. Lett. B, 2350227 (2023). https://doi.org/10.1142/S0217984923502275

  41. Ma, W.-X.: Interaction solutions to hirota-satsuma-ito equation in (2+1)-dimensions. Front. Math. China. 14, 619–629 (2019). https://doi.org/10.1007/s11464-019-0771-y

    Article  MathSciNet  Google Scholar 

  42. Li, J., Manafian, J., Hang, N.T., Ngoc Huy, D.T., Davidyants, A.: Interaction among a lump, periodic waves, and kink solutions to the kp-bbm equation. Int. J. Nonlinear Sci. Numer. Simul. 24(1), 227–243 (2023). https://doi.org/10.1515/ijnsns-2020-0156

    Article  MathSciNet  Google Scholar 

  43. Akinyemi, L., Morazara, E.: Integrability, multi-solitons, breathers, lumps and wave interactions for generalized extended kadomtsev–petviashvili equation. Nonlinear Dyn. 111(5), 4683–4707 (2023). https://doi.org/10.1007/s11071-022-08087-x

  44. Zhang, Z., Guo, Q., Li, B., Chen, J.: A new class of nonlinear superposition between lump waves and other waves for kadomtsev–petviashvili i equation. Commun. Nonlinear. Sci. 101, 105866 (2021). https://doi.org/10.1016/j.cnsns.2021.105866

  45. Wazwaz, A.-M.: Two new painlevé-integrable (2+ 1) and (3+ 1)-dimensional kdv equations with constant and time-dependent coefficients. Nucl. Phys. B 954, 115009 (2020). https://doi.org/10.1016/j.nuclphysb.2020.115009

  46. Ali, K.K., Yilmazer, R.: M-lump solutions and interactions phenomena for the (2+ 1)-dimensional kdv equation with constant and time-dependent coefficients. Chinese. J. Phys. 77, 2189–2200 (2022). https://doi.org/10.1016/j.cjph.2021.11.015

    Article  ADS  MathSciNet  Google Scholar 

  47. Pu, J.-C., Chen, Y.: Integrability and exact solutions of the (2+ 1)-dimensional kdv equation with bell polynomials approach. ACTA. MATH. APPL. SIN-E. 38(4), 861–881 (2022). https://doi.org/10.1007/s10255-022-1020-9

    Article  MathSciNet  Google Scholar 

  48. Liu, J.-G.: Lump-type solutions and interaction solutions for the (2+ 1)-dimensional generalized fifth-order kdv equation. Appl. Math. Lett. 86, 36–41 (2018). https://doi.org/10.1016/j.aml.2018.06.011

    Article  MathSciNet  Google Scholar 

  49. Tan, W., Zhang, W., Zhang, J.: Evolutionary behavior of breathers and interaction solutions with m-solitons for (2+ 1)-dimensional kdv system. Appl. Math. Lett. 101, 106063 (2020). https://doi.org/10.1016/j.aml.2019.106063

    Article  MathSciNet  Google Scholar 

  50. Saifullah, S., Ahmad, S., Alyami, M.A., Inc, M.: Analysis of interaction of lump solutions with kink-soliton solutions of the generalized perturbed kdv equation using hirota-bilinear approach. Phys. Lett. A 454, 128503 (2022). https://doi.org/10.1016/j.physleta.2022.128503

    Article  MathSciNet  Google Scholar 

  51. Hirota, R.: Direct methods in soliton theory. Solitons, 157–176 (1980)

Download references

Funding

Funding was provided by the Scientific Research Foundation of the Education Department of Sichuan Province, China (Grant No. 15ZB0362), and Scientific Research Foundation of Engineering and Technical College of Chengdu University of Technology (Grant No. C122022022).

Author information

Authors and Affiliations

Authors

Contributions

Jie Zhong was responsible for writing the original manuscript and applying the methods. Zhimin Ma was in charge of supervision and formal analysis. Bingji Wang and Yuanlin Liu were responsible for software.

Corresponding author

Correspondence to Zhimin Ma.

Ethics declarations

Conflicts of interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, J., Ma, Z., Wang, B. et al. Nonlinear Superposition Between Lump Waves and Other Nonlinear Waves of the (2+1)-Dimensional Extended Korteweg-De Vries Equation. Int J Theor Phys 62, 268 (2023). https://doi.org/10.1007/s10773-023-05524-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05524-4

Keywords

Navigation