Skip to main content
Log in

\(A_4\) Flavor Model for Deviation in \(\mu -\tau \) Reflection Symmetry with Type-I+II Seesaw Extensions

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this work, we propose a theoretical scenario for deviation from \(\mu -\tau \) reflection symmetry explaining non-maximal values of atmospheric mixing angle (\(\theta _{23}\)). In fact, \(\mu -\tau \) reflection symmetry of neutrino mass matrix predict maximal \(\theta _{23}\) (\(=45^o\)) and maximal CP violation i.e. Dirac CP phase (\(\delta =\pm \frac{\pi }{2}\)). We propose A\(_4\) symmetry based deviation in \(\mu -\tau \) reflection symmetry and investigate its phenomenology using Type-I+II seesaw mechanism for neutrino mass generation. We have obtained deviations from the predictions of \(\mu -\tau \) reflection symmetry. The model satisfies the neutrino oscillation data for normal hierarchy of neutrino masses while inverted hierarchy is ruled out. We have, also, obtained predictions on neutrinoless double beta decay (\(0\nu \beta \beta \)) amplitude, \(M_{ee}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Frampton, P.H., Glashow, S.L., Marfatia, D.: Phys. Lett. B 536, 79–82 (2002)

    Article  ADS  Google Scholar 

  2. Desai, B.R., Roy, D.P., Vaucher, A.R.: Mod. Phys. Lett. A 18, 1355–1366 (2003)

  3. Xing, Z-z.: Phys. Lett. B 530, 159–166 (2002)

  4. Guo, W.-l., Xing, Z.-z.: Phys. Rev. D 67, 053002 (2003)

  5. Merle, A., Rodejohann, W.: Phys. Rev. D 73, 073012 (2006)

    Article  ADS  Google Scholar 

  6. Dev, S., Kumar, S.: Mod. Phys. Lett. A 22, 1401–1410 (2007)

    Article  ADS  Google Scholar 

  7. Dev, S., Kumar, S., Verma, S., Gupta, S.: Nucl. Phys. B 784, 103–117 (2007)

    Article  ADS  Google Scholar 

  8. Hirsch, M., Joshipura, A.S., Kaneko, S., Valle, J.W.F.: Phys. Rev. Lett. 99, 151802 (2007)

    Article  ADS  Google Scholar 

  9. Fritzsch, H., Xing, Z.-Z., Zhou, S.: JHEP 09, 083 (2011)

    Article  ADS  Google Scholar 

  10. Ludl, P.O., Grimus, W.: JHEP 1407, 090 (2014)

    Article  ADS  Google Scholar 

  11. Borah, M., Borah, D., Das, M.K.: Phys. Rev. D 91, 113008 (2015)

    Article  ADS  Google Scholar 

  12. Cebola, L.M., Emmanuel-Costa, D., Felipe, R.G.: Phys. Rev. D 92, 025005 (2015)

    Article  ADS  Google Scholar 

  13. Zhou, S.: Chin. Phys. C 40, 033102 (2016)

    Article  ADS  Google Scholar 

  14. Gautam, R.R., Kumar, S.: Phys. Rev. D 94, no.3, 036004 (2016) [erratum: Phys. Rev. D 100(3), 039902 (2019)]

  15. Gautam, R.R.: Phys. Rev. D 97, 055022 (2018)

    Article  ADS  Google Scholar 

  16. Singh, M.: Nucl. Phys. B 931, 446–468 (2018)

    Article  ADS  Google Scholar 

  17. Verma, S., Kashav, M.: Mod. Phys. Lett. A 35(20), 2050165 (2020)

  18. Kaneko, S., Sawanaka, H., Tanimato, M.: JHEP 0508, 073 (2005)

    Article  ADS  Google Scholar 

  19. Dev, S., Verma, S., Gupta, S.: Phys. Lett. B 687, 53–60 (2010)

    Article  ADS  Google Scholar 

  20. Goswami, S., Khan, S., Watanabe, A.: Phys. Lett. B 693, 249–254 (2010)

    Article  ADS  Google Scholar 

  21. Liu, J.-Y., Zhou, S.: Phys. Rev. D 87, 093010 (2013)

    Article  ADS  Google Scholar 

  22. Kalita, R., Borah, D.: Int. J. Mod. Phys. A 31, 1650008 (2016)

    Article  ADS  Google Scholar 

  23. Verma, S., Kashav, M., Bhardwaj, S.: Nucl. Phys. B 946, 114704 (2019)

  24. Mohapatra, R.N., Rodejohann, W.: Phys. Lett. B 644, 59–66 (2007)

    Article  ADS  Google Scholar 

  25. Grimus, W., Lavoura, L.: J. Phys. G 31, 683–692 (2005)

    Article  ADS  Google Scholar 

  26. Grimus, W., Lavoura, L.: Phys. Rev. D 62, 093012 (2000)

    Article  ADS  Google Scholar 

  27. Lavoura, L.: Phys. Rev. D 62, 093011 (2000)

    Article  ADS  Google Scholar 

  28. Joshipura, A.S., Rodejohann, W.: Phys. Lett. B 678, 276–282 (2009)

    Article  ADS  Google Scholar 

  29. Verma, S.: Phys. Lett. B 714, 92–96 (2012)

    Article  ADS  Google Scholar 

  30. Kalita, R., Borah, D., Das, M.K.: Nucl. Phys. B 894, 307–327 (2015)

  31. Dev, S., Gautam, R.R., Singh, L.: Phys. Rev. D 89, 013006 (2014)

  32. Kashav, M., Verma, S.: JHEP 09, 100 (2021)

  33. Lashin, E.I., Chamoun, N.: Phys. Rev. D. 80, 093004 (2009)

    Article  ADS  Google Scholar 

  34. Dev, S., Verma, S., Gupta, S., Gautam, R.R.: Phys. Rev. D. 81, 053010 (2010)

    Article  ADS  Google Scholar 

  35. Dev, S., Gupta, S., Gautam, R.R., Singh, L.: Phys. Lett. B 706, 168–176 (2011)

    Article  ADS  Google Scholar 

  36. Harrison, P.F., Scott, W.G.: Phys. Lett. B 547, 219–228 (2002)

  37. Mohapatra, R.N., Nishi, C.C.: Phys. Rev. D 86, 073007 (2012)

  38. Mohapatra, R.N., Nishi, C.C.: JHEP 08, 092 (2015)

  39. Nishi, C.C.: Phys. Rev. D 93(9), 093009 (2016)

  40. He, X.G., Chin, J.: Phys. 53, 100101 (2015)

  41. Li, C.C., Lu, J.N., Ding, G.J.: Nucl. Phys. B 913, 110–131 (2016)

  42. Ma, E., Natale, A., Popov, O.: Phys. Lett. B 746, 114–116 (2015)

  43. Liu, Z.C., Yue, C.X., Zhao, Z.h.: JHEP 10, 102 (2017)

  44. King, S.F., Zhou, Y.L.: JHEP 05, 217 (2019)

  45. Nath, N., Xing, Z.z., Zhang, J.: Eur. Phys. J. C 78(4), 289 (2018)

  46. Nath, N.: Phys. Rev. D 99(3), 035026 (2019)

  47. Rodejohann, W., Xu, X.J.: Phys. Rev. D 96(5), 055039 (2017)

  48. Xing, Z.z., Zhu, J.y.: Chin. Phys. C 41(12), 123103 (2017)

  49. Nishi, C.C., Sánchez-Vega, B.L.: JHEP 01, 068 (2017)

  50. Zhao, Z.h.: Nucl. Phys. B 935, 129–143 (2018)

  51. Chakraborty, K., Goswami, S., Karmakar, B.: Phys. Rev. D 100(3), 035017 (2019)

  52. Dey, M., Chakraborty, P., Roy, S.: Phys. Lett. B 839, 137767 (2023)

  53. Chakraborty, P., Roy, S.: Nucl. Phys. B 992, 116252 (2023)

  54. Duarah, C.: Phys. Lett. B 815, 136119 (2021)

  55. Abe, K., et al.: [T2K], Phys. Rev. D 103(11), 112008 (2021)

  56. Abe, K., et al.: [T2K], Eur. Phys. J. C 83(9), 782 (2023)

  57. Acero, M.A., et al.: [NOvA], Phys. Rev. D 106(3), 032004 (2022)

  58. Gupta, S., Joshipura, A.S., Patel, K.M.: Phys. Rev. D 85, 031903 (2012)

    Article  ADS  Google Scholar 

  59. Ma, E.: Phys. Rev. D 70, 031901 (2004)

    Article  ADS  Google Scholar 

  60. Ma, E., Wegman, D.: Phys. Rev. Lett. 107, 061803 (2011)

    Article  ADS  Google Scholar 

  61. Minkowski, P.: Phys. Lett. B 67, 421–428 (1977)

    Article  ADS  Google Scholar 

  62. Mohapatra, R.N., Senjanovic, G.: Phys. Rev. Lett. 44, 912 (1980)

    Article  ADS  Google Scholar 

  63. Magg, M., Wetterich, C.: Phys. Lett. B 94, 61–64 (1980)

    Article  ADS  Google Scholar 

  64. Schechter, J., Valle, J.W.F.: Phys. Rev. D 22, 2227 (1980)

    Article  ADS  Google Scholar 

  65. Wetterich, C.: Nucl. Phys. B 187, 343–375 (1981)

    Article  ADS  Google Scholar 

  66. Esteban, I., Gonzalez-Garcia, M.C., Maltoni, M., Schwetz, T., Zhou, A.: JHEP 09, 178 (2020)

    Article  ADS  Google Scholar 

  67. Giusarma, E., Gerbino, M., Mena, O., Vagnozzi, S., Ho, S., Freese, K.: Phys. Rev. D 94, 083522 (2016)

    Article  ADS  Google Scholar 

  68. Aghanim, N., et al.: Planck. Astron. Astrophys. 641, A6 (2020)

    Google Scholar 

Download references

Acknowledgements

M. K. acknowledges the financial support provided by Department of Science and Technology (DST), Government of India vide Grant No. DST/INSPIRE Fellowship/2018/IF180327. The authors, also, acknowledge Department of Physics and Astronomical Science for providing necessary facility to carry out this work.

Author information

Authors and Affiliations

Authors

Contributions

S.V. did the Conceptualization of the problem, editing, validation of the numerical code and formal analysis, final draft of the manuscript. M.K. worked the Methodology, numerical programming, writing and editing.

Corresponding author

Correspondence to Monal Kashav.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashav, M., Verma, S. \(A_4\) Flavor Model for Deviation in \(\mu -\tau \) Reflection Symmetry with Type-I+II Seesaw Extensions. Int J Theor Phys 62, 267 (2023). https://doi.org/10.1007/s10773-023-05523-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05523-5

Keywords

Navigation