Skip to main content
Log in

Energy Levels of Quantum Dots in Monolayer of Molybdenum Disulfide MoS\(_2\)

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We are conducting a study on the energy levels of a magnetic circular quantum dot made of metal dichalcogenide MoS\(_2\), which is exposed to a perpendicular magnetic field. To obtain the eigenspinors analytically, we solve the Dirac equation for the K and \(K^\prime\) valleys. By utilizing the Hamiltonian for low energies, we derive analytical expressions for the energy levels and apply boundary conditions at the interface. We explore four different configurations of the system and numerically analyze our findings. Specifically, we show the relationship between the energy levels, quantum dot radius, and magnetic field for both the K and \(K^\prime\) valleys. We demonstrate that the energy levels depends on the spin-orbit interaction and on the quantum number m. In addition, for \(m\ne 0\), due to the influence of the spin-orbit interaction of the quantum dot of MoS\(_2\), there is a degeneration of the valleys and spins, and this degeneracy is lifted if \(m=0\). The resulting eigenenergies \(E_{nm}\) exhibit a symmetric behavior between the valence and conduction bands. In addition, for \(m<0\), the eigenenergies are independent of m but for \(m>0\), they increase as long as m increases. Finally, we show that the radial probability exhibits a damped oscillatory behavior as the dot radius increases. Furthermore, the behavior of the radial probability is strongly dependent on both the quantum numbers n and m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S.: Nat. Nanotechnol. 7, 699 (2012)

    ADS  Google Scholar 

  2. Radisavljević, B., Radenović, A., Brivio, J., Giacometti, V., Kis, A.: Nat. Nanotechnol. 6, 147 (2011)

    ADS  Google Scholar 

  3. Splendiani, A., Sun, L., Zhang, Y., Li, T., Kim, J., Chim, C.-Y., Galli, G., Wang, F.: Nano Lett. 10, 1271 (2010)

    ADS  Google Scholar 

  4. Eda, G., Yamaguchi, H., Voiry, D., Fujita, T., Chen, M., Chhowalla, M.: Nano Lett. 11, 5111 (2011)

    ADS  Google Scholar 

  5. Zeng, H., Dai, J., Yao, W., Xiao, D., Cui, X.: Nat. Nanotechnol. 7, 490 (2012)

    ADS  Google Scholar 

  6. Mak, K.F., He, K., Shan, J., Heinz, T.F.: Nat. Nanotechnol. 7, 494 (2012)

    ADS  Google Scholar 

  7. Cao, T., Wang, G., Han, W., Ye, H., Zhu, C., Shi, J., Niu, Q., Tan, P., Wang, B.L.E., Feng, J.: Nat. Commun. 3, 887 (2012)

    ADS  Google Scholar 

  8. Wu, S., Ross, J.S., Liu, G.-B., Aivazian, G., Jones, A., Fei, Z., Zhu, W., Xiao, D., Yao, W., Cobden, D., Xu, X.: Nat. Phys. 9, 149 (2013)

    Google Scholar 

  9. Sallen, G., Bouet, L., Marie, X., Wang, G., Zhu, C.R., Han, W.P., Lu, Y., Tan, P.H., Amand, T., Liu, B.L., Urbaszek, B.: Phys. Rev. B 86, 081301 (2012)

    ADS  Google Scholar 

  10. Buscema, M., Barkelid, M., Zwiller, V., van der Zant, H.S.J., Steele, G.A., Castellanos-Gomez, A.: Nano Lett. 13, 358 (2013)

    ADS  Google Scholar 

  11. Jones, A.M., Yu, H., Ghimire, N.J., Wu, S., Aivazian, G., Ross, J.S., Zhao, B., Yan, J., Mandrus, D.G., Xiao, D., Yao, W., Xu, X.: Nat. Nanotechnol. 8, 634 (2013)

    ADS  Google Scholar 

  12. Xiao, D., Liu, G.-B., Feng, W., Xu, X., Yao, W.: Phys. Rev. Lett. 108, 196802 (2012)

    ADS  Google Scholar 

  13. Lu, H.-Z., Yao, W., Xiao, D., Shen, S.-Q.: Phys. Rev. Lett. 110, 016806 (2013)

    ADS  Google Scholar 

  14. Li, X., Zhang, F., Niu, Q.: Phys. Rev. Lett. 110, 066803 (2013)

    ADS  Google Scholar 

  15. Zhu, Z.Y., Cheng, Y.C., Schwingenschlögl, U.: Phys. Rev. B 84, 153402 (2011)

    ADS  Google Scholar 

  16. Kaasbjerg, K., Thygesen, K.S., Jacobsen, K.W.: Phys. Rev. B 85, 115317 (2012)

    ADS  Google Scholar 

  17. Cheiwchanchamnangij, T., Lambrecht, W.R.L.: Phys. Rev. B 85, 205302 (2012)

    ADS  Google Scholar 

  18. Ramasubramaniam, A.: Phys. Rev. B 86, 115409 (2012)

    ADS  Google Scholar 

  19. Kośmider, K., Fernández-Rossier, J.: Phys. Rev. B 87, 075451 (2013)

    ADS  Google Scholar 

  20. Shi, H., Pan, H., Zhang, Y.-W., Yakobson, B.I.: Phys. Rev. B 87, 155304 (2013)

    ADS  Google Scholar 

  21. Ellis, J.K., Lucero, M.J., Scuseria, G.E.: App. Phys. Lett. 99, 261908 (2011)

    ADS  Google Scholar 

  22. Kadantsev, E.S., Hawrylak, P.: Solid State Communications 152, 909 (2012)

    ADS  Google Scholar 

  23. Yun, W.S., Han, S.W., Hong, S.C., Kim, I.G., Lee, J.D.: Phys. Rev. B 85, 033305 (2012)

    ADS  Google Scholar 

  24. Feng, W., Yao, Y., Zhu, W., Zhou, J., Yao, W., Xiao, D.: Phys. Rev. B 86, 165108 (2012)

    ADS  Google Scholar 

  25. Li, X., Mullen, J.T., Jin, Z., Borysenko, K.M., Buongiorno Nardelli, M., Kim, K.: W. Phys. Rev. B 87, 115418 (2013)

    ADS  Google Scholar 

  26. Dolui, K., Rungger, I., Sanvito, S.: Phys. Rev. B 87, 165402 (2013)

    ADS  Google Scholar 

  27. Mak, K.F., Lee, C., Hone, J., Shan, J., Heinz, T.F.: Phys. Rev. Lett. 105, 136805 (2010)

    ADS  Google Scholar 

  28. Tongay, S., Zhou, J., Ataca, C., Lo, K., Matthews, T.S., Li, J., Grossman, J.C., Wu, J.: Nano Letters 12, 5576 (2012)

    ADS  Google Scholar 

  29. Ross, J.S., Wu, S., Yu, H., Ghimire, N.J., Jones, A.M., Aivazian, G., Yan, J., Mandrus, D.G., Xiao, D., Yao, W., Xu, X.: Nat. Commun. 4, 1474 (2013)

    ADS  Google Scholar 

  30. Zeng, H., Liu, G.-B., Dai, J., Yan, Y., Zhu, B., He, R., Xie, L., Xu, S., Chen, X., Yao, W., Cui, X.: Sci. Rep. 3, 1608 (2013)

    Google Scholar 

  31. Lembke, D., Kis, A.: ACS Nano 6, 10070 (2012)

    Google Scholar 

  32. Lin, M.-W., Liu, L., Lan, Q., Tan, X., Dhindsa, K.S., Zeng, P., Naik, V.M., Cheng, M.M.-C., Zhou, Z.: J. Phys. D: Appl. Phys. 45, 345102 (2012)

    ADS  Google Scholar 

  33. Bao, W., Cai, X., Kim, D., Sridhara, K., Fuhrer, M.S.: Appl. Phys. Lett. 102, 042104 (2013)

    ADS  Google Scholar 

  34. Larentis, S., Fallahazad, B., Tutuc, E.: Appl. Phys. Lett. 101, 223104 (2012)

    ADS  Google Scholar 

  35. Gopalakrishnan, D., Damien, D., Shaijumon, M.M.: ACS Nano 8, 5297 (2014)

    Google Scholar 

  36. Wilcoxon, J.P., Samara, G.A.: Phys. Rev. B 51, 7299 (1995)

    ADS  Google Scholar 

  37. Belouad, A., Kamal, A., Houça, R., Choubabi, E.B., El Bouziani, M.: Physica E: Low-dimensional Systems and Nanostructures 138, 115100 (2022)

    Google Scholar 

  38. Belouad, A., Kamal, A., Houça, R., Choubabi, E.B., Monkade, M.: J. Low Temp. Phys. 211, 29 (2023)

    ADS  Google Scholar 

  39. Lu, G.-Z., Wu, M.-J., Lin, T.-N., Chang, C.-Y., Lin, W.-L., Chen, Y.T., Hou, C.-F., Cheng, H.-J., Lin, T.-Y., Shen, J.-L., Chen, Y.-F.: Small 15, 1901908 (2019)

    Google Scholar 

  40. Gopalakrishnan, D., Damien, D., Li, B., Gullappalli, H., Pillai, V.K., Ajayan, P.M., Shaijumon, M.M.: Chem. Commun. 51, 6293 (2015)

    Google Scholar 

  41. Benson, J., Li, M., Wang, S., Wang, P., Papakonstantinou, P.: ACS Appl. Mater. Interfaces 7, 14113 (2015)

    Google Scholar 

  42. Li, B.L., Chen, L.X., Zou, H.L., Lei, J.L., Luo, H.Q., Li, N.B.: Nanoscale 6, 9831 (2014)

    ADS  Google Scholar 

  43. Ren, X., Pang, L., Zhang, Y., Ren, X., Fan, H., Liu, S.F.: J. Mater. Chem. A 3, 10693 (2015)

    Google Scholar 

  44. Xu, S., Li, D., Wu, P.: Adv. Funct. Mater. 25, 1127 (2015)

    Google Scholar 

  45. Khaledian, S., Nalaini, F., Mehrbakhsh, M., Abdoli, M., Salehi Zahabi, S.: FlatChem 27, 100246 (2021)

    Google Scholar 

  46. Oliveira, D., Fu, J., Villegas-Lelovsky, L., Dias, A.C., Qu, F.: Phys. Rev. B 93, 205422 (2016)

    ADS  Google Scholar 

  47. Choi, W., Cho, M.Y., Konar, A., Lee, J.H., Cha, G.-B., Hong, S.C., Kim, S., Kim, J., Jena, D., Joo, J., Kim, S.: Adv. Mater. 24, 5832 (2012)

    Google Scholar 

  48. Shan, W.-Y., Lu, H.-Z., Xiao, D.: Phys. Rev. B 88, 125301 (2013)

    ADS  Google Scholar 

  49. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. DoverPublications, New York (1965)

    Google Scholar 

  50. Mirzakhani, M., Zarenia, M., Ketabi, S.A., da Costa, D.R., Peeters, F.M.: Phys. Rev. B 93, 165410 (2016)

    ADS  Google Scholar 

  51. Mirzakhani, M., Zarenia, M., Vasilopoulos, P., Ketabi, S.A., Peeters, F.M.: Phys. Rev. B 96, 125430 (2017)

    ADS  Google Scholar 

  52. Grujić, M., Zarenia, M., Chaves, A., Tadić, M., Farias, G.A., Peeters, F.M.: Phys. Rev. B 84, 205441 (2011)

    ADS  Google Scholar 

  53. Belouad, A., Lemaalem, B., Jellal, A., Bahlouli, H.: Mater. Res. Express 7, 015090 (2020)

    ADS  Google Scholar 

  54. Kabel, J., Sharma, S., Acharya, A., Zhang, D., Yap, Y. K.: C 7 (2021)

  55. Donfack, B., Fotio, F., Fotue, A., Fai, L.: Chin. J. Phys. 66, 573 (2020)

    Google Scholar 

  56. Donfack, B., Fotio, F., Fotue, A.J.: Euro. Phys. J. Plus 136, 241 (2021)

    Google Scholar 

  57. Donfack, B., Fotue, A.J.: J. Low Temp. Phys. 204, 206 (2021)

    ADS  Google Scholar 

  58. Donfack, B., Mbognou, F.C.F., Tedondje, G.T., Cedric, T.M., Fotue, A.J.: J. Low Temp. Phys. 206, 63 (2022)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A. K. and A. B. wrote the main manuscript text and A. K. prepared all figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Abdellatif Kamal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamal, A., Belouad, A., Houça, R. et al. Energy Levels of Quantum Dots in Monolayer of Molybdenum Disulfide MoS\(_2\). Int J Theor Phys 62, 256 (2023). https://doi.org/10.1007/s10773-023-05517-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05517-3

Keywords

Mathematics Subject Classification (2010)

Navigation