Skip to main content
Log in

Cyclic Quantum Teleportation with Multi-Level of Control

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We propose a cyclic quantum controlled teleportation with three controllers via a nine-qubit entangled channel state. We show that the controllers have two types of controlling levels: the same and multi-level. The former makes the controllers’ combination mimic the OR or AND logic gate, i.e., each transmission in the cyclic scheme needs at least one (and does not matter which one) or all of the controllers’ cooperation, respectively. While the latter makes each transmission needs a different number of controllers’ cooperation combination. Furthermore, we demonstrate the protocols’ channel preparation method in its application to the other controllers’ combination schemes. The main advantage of the proposed protocols is that they provide a teleportation scheme with various types of controller agreement combinations that can teleport information cyclically with various levels of importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  2. Boschi, D., Branca, S., De Martini, F., Hardy, L., Popescu, S.: Experimental realization of teleporting an unknown pure quantum state via dual classical and einstein-podolsky-rosen channels. Phys. Rev. Lett. 80, 1121–1125 (1998)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  3. Ursin, R., Jennewein, T., Aspelmeyer, M., Kaltenbaek, R., Lindenthal, M., Walther, P., Zeilinger, A.: Quantum teleportation across the danube. Nature 430(7002), 849–849 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Jin, X.M., Ren, J.G., Yang, B., Yi, Z.H., Zhou, F., Xu, X.F., Wang, S.K., Yang, D., Hu, Y.F., Jiang, S., Yang, T., Yin, H., Chen, K., Peng, C.-Z., Pan, J.-W.: Experimental free-space quantum teleportation. Nature Photonics 4(6), 376–381 (2010)

    Article  ADS  CAS  Google Scholar 

  5. Ma, X.S., Herbst, T., Scheidl, T., Wang, D., Kropatschek, S., Naylor, W., Wittmann, B., Mech, A., Kofler, J., Anisimova, E., Makarov, V., Jennewein, T., Ursin, R., Zeilinger, A.: Quantum teleportation over 143 kilometres using active feed-forward. Nature 489(7415), 269–273 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Takesue, H., Dyer, S.D., Stevens, M.J., Verma, V., Mirin, R.P., Nam, S.W.: Quantum teleportation over 100 km of fiber using highly efficient superconducting nanowire single-photon detectors. Optica 2(10), 832–835 (2015)

    Article  ADS  Google Scholar 

  7. Ren, J.G., Xu, P., Yong, H.L., Zhang, L., Liao, S.K., Yin, J., Liu, W.Y., Cai, W.Q., Yang, M., Li, L., Yang, K.X., Han, X., Yao, Y.-Q., Li, J., Wu, H.-Y., Wan, S., Liu, L., Liu, D.-Q., Kuang, Y.-W., He, Z.-P., Shang, P., Guo, C., Zheng, R.-H., Tian, K., Zhu, Z.-C., Liu, N.-L., Lu, C.-Y., Shu, R., Chen, Y.-A., Peng, C.-Z., Wang, J.-Y., Pan, J.-W.: Ground-to-satellite quantum teleportation. Nature 549(7670), 70–73 (2017)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394–4400 (1998)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  9. Zha, X.W., Zou, Z.-C., Qi, J.-X., Song, H.-Y.: Bidirectional quantum controlled teleportation via five-qubit cluster state. Int. J. Theor. Phys. 52(6), 1740–1744 (2013)

    Article  MathSciNet  Google Scholar 

  10. Sang, Z.-W.: Cyclic controlled teleportation by using a seven-qubit entangled state. Int. J. Theor. Phys. 57(12), 3835–3838 (2018)

    Article  MathSciNet  Google Scholar 

  11. Shukla, C., Banerjee, A., Pathak, A.: Bidirectional controlled teleportation by using 5-qubit states: A generalized view. Int. J. Theor. Phys. 52(10), 3790–3796 (2013)

    Article  Google Scholar 

  12. Verma, V., Yadav, D., Mishra, D.K.: Improvement on cyclic controlled teleportation by using a seven-qubit entangled state. Opt. Quant. Electron. 53(8), 448 (2021)

    Article  Google Scholar 

  13. Rahmawati, R., Purwanto, A., Subagyo, B.A., Taufiqi, M., Hatmoko, B.D.: Symmetric and asymmetric cyclic quantum teleportation with different controller for each participant. Int. J. Theor. Phys. 61(10), 244 (2022)

    Article  MathSciNet  Google Scholar 

  14. Jiang, Y.L., Zhou, R.G., Hao, D.Y., Hu, W.: Bidirectional controlled quantum teleportation of three-qubit state by a new entangled eleven-qubit state. Int. J. Theor. Phys. 60(9), 3618–3630 (2021)

    Article  MathSciNet  Google Scholar 

  15. Yuan, W.: Quantum teleportation of an arbitrary three-qubit state using ghz-like states. Int. J. Theor. Phys. 54(3), 851–855 (2015)

    Article  MathSciNet  Google Scholar 

  16. Liu, Z.-M., Zhou, L.: Quantum teleportation of a three-qubit state using a five-qubit cluster state. Int. J. Theor. Phys. 53(12), 4079–4082 (2014)

    Article  Google Scholar 

  17. Yang, Y.-Q., Zha, X.-W., Yu, Y.: Asymmetric bidirectional controlled teleportation via seven-qubit cluster state. Int. J. Theor. Phys. 55(10), 4197–4204 (2016)

    Article  Google Scholar 

  18. Li, Y.-H., Jin, X.-M.: Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments. Quantum Inf. Process. 15(2), 929–945 (2016)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  19. Li, Y.-H., Nie, L.-P., Li, X.-L., Sang, M.-H.: Asymmetric bidirectional controlled teleportation by using six-qubit cluster state. Int. J. Theor. Phys. 55(6), 3008–3016 (2016)

    Article  Google Scholar 

  20. Duan, Y.-J., Zha, X.-W.: Bidirectional quantum controlled teleportation via a six-qubit entangled state. Int. J. Theor. Phys. 53(11), 3780–3786 (2014)

    Article  Google Scholar 

  21. Li, Y.-H., Nie, L.-P.: Bidirectional controlled teleportation by using a five-qubit composite ghz-bell state. Int. J. Theor. Phys. 52(5), 1630–1634 (2013)

    Article  MathSciNet  Google Scholar 

  22. Li, Y.H., Li, X.L., Sang, M.H., Nie, Y.Y., Wang, Z.S.: Bidirectional controlled quantum teleportation and secure direct communication using five-qubit entangled state. Quantum Inf. Process. 12(12), 3835–3844 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  23. Sang, M.-H.: Bidirectional quantum controlled teleportation by using a seven-qubit entangled state. Int. J. Theor. Phys. 55(1), 380–383 (2016)

    Article  MathSciNet  Google Scholar 

  24. Chen, Y.-X., Du, J., Liu, S.-Y., Wang, X.-H.: Cyclic quantum teleportation. Quantum Inf Process. 16(8), 201 (2017)

    Article  ADS  Google Scholar 

  25. Zhou, R.-G., Ling, C.: Asymmetric cyclic controlled quantum teleportation by using nine-qubit entangled state. Int. J. Theor. Phy. 60(9), 3435–3459 (2021)

    Article  MathSciNet  Google Scholar 

  26. Taufiqi, M., Purwanto, A., Subagyo, B.A., Rahmawati, R.: Dual input quantum teleportation. Int. J. Theor. Phys. 62(2), 20 (2023)

    Article  MathSciNet  Google Scholar 

  27. Cao, Z., Qi, J., Zhang, Y.: Bidirectional quantum transmission with different levels of control. Int. J. Theor. Phys. 61(3), 81 (2022)

    Article  MathSciNet  Google Scholar 

  28. Purwanto, A., Sukamto, H., Yuwana, L.: Quantum entanglement and reduced density matrices. Int. J. Theor. Phys. 57(8), 2426–2436 (2018)

    Article  MathSciNet  Google Scholar 

  29. Li, Y.H., Qiao, Y., Sang, M.H., Nie, Y.Y.: Controlled cyclic quantum teleportation of an arbitrary two-qubit entangled state by using a ten-qubit entangled state. Int. J. Theor. Phys. 58, 1541–1545 (2019)

    Article  Google Scholar 

  30. Verma, V.: Cyclic quantum teleportation via ghz-like state. Modern Phys. Lett. A. 35(40), 2050333 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  31. Zhou, R.-G., Li, X., Qian, C., Ian, H.: Quantum bidirectional teleportation 2 \(\leftrightarrow \) 2 or 2 \(\leftrightarrow \) 3 qubit teleportation protocol via 6-qubit entangled state. Int. J. Theor. Phys. 59(1), 166–172 (2020)

    Article  MathSciNet  Google Scholar 

  32. Fortes, R., Rigolin, G.: Fighting noise with noise in realistic quantum teleportation. Phys. Rev. A. 92, 012338 (2015)

    Article  ADS  Google Scholar 

  33. Kraus, K.: Complementary observables and uncertainty relations. Phys. Rev. D. 35, 3070–3075 (1987)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  34. Kaur, S., Gill, S.: Asymmetric controlled quantum teleportation via eight-qubit entangled state in a noisy environment. Int. J. Theor. Phys. 62(2), 31 (2023)

    Article  MathSciNet  Google Scholar 

  35. Sarvaghad-Moghaddam, M., Ramezani, Z., Amiri, I.S.: Bidirectional controlled quantum teleportation using eight-qubit quantum channel in noisy environments. Int. J. Theor. Phys. 59(10), 3156–3173 (2020)

    Article  MathSciNet  Google Scholar 

  36. Wang, M.R., Xiang, Z., Ren, P.: Bidirectional controlled quantum teleportation of arbitrary two-qubit states using ten-qubit entangled channel in noisy environment. Int. J. Theor. Phys. 61(11), 259 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed to the work and the manuscript.

Corresponding author

Correspondence to Agus Purwanto.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taufiqi, M., Purwanto, A., Subagyo, B.A. et al. Cyclic Quantum Teleportation with Multi-Level of Control. Int J Theor Phys 63, 9 (2024). https://doi.org/10.1007/s10773-023-05513-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05513-7

Keywords

Navigation