Skip to main content
Log in

Weighted p-Rényi Entropy Power Inequality: Information Theory to Quantum Shannon Theory

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We study the p-Rényi entropy power inequality with a weight factor t on two independent continuous random variables X and Y. The extension essentially relies on a modulation on the sharp Young’s inequality due to Bobkov and Marsiglietti. Our research provides a key result that can be used as a fundamental research finding in quantum Shannon theory, as it offers a Rényi version of the entropy power inequality for quantum systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bell, J.: On the Einstein Podolsky Rosen paradox. Physics Physique Fizika 1, 195 (1964)

    Article  MathSciNet  Google Scholar 

  3. Eisert, J., Cramer, M., Plenio, M.: Colloquium: Area laws for the entanglement entropy. Rev. Mod. Phys. 82, 277 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Calabrese, P., Cardy, J.: Evolution of entanglement entropy in one-dimensional systems. J. Stat. Mech. P04010 (2005)

  5. Stam, A.J.: Some inequalities satisfied by the quantities of information of Fisher and Shannon. Inf. Control 2, 101 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  6. Blachman, N.M.: The convolution inequality for entropy powers. IEEE Trans. Inf. Theory 11, 267 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beckner, W.: Inequalities in Fourier analysis. Ann. Math. 102, 159 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brascamp, H.J., Lieb, E.H.: Best constants in Young’s inequality, its converse, and its generalization to more than three functions. Adv. Math. 20, 151 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lieb, E.H.: Proof of an entropy conjecture of Wehrl. Commun. Math. Phys. 62, 35 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Rioul, O.: Yet another proof of the entropy power inequality. IEEE Trans. Inf. Theory 63, 3595 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Carlen, E.A., Soffer, A.: Entropy production by block variable summation and central limit theorems. Commun. Math. Phys. 140, 339 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Guo, D., Shamai (Shitz), S., Verdú, S.: Proof of entropy power inequalities via MMSE. In: Proc. 2006 IEEE Int’l Symp. Inf. Theory, Seattle, WA, USA, pp. 1011–1015 (2006)

  13. Verdú, S., Guo, D.: A simple proof of the entropy-power inequality. IEEE Trans. Inf. Theory 52, 2165 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Binia, J.: On divergence-power inequalities. IEEE Trans. Inf. Theory 53, 1179 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rioul, O.: A simple proof of the entropy-power inequality via properties of mutual information. In: Proc. 2006 IEEE Int’l Symp. Inf. Theory, Nice, France, pp. 46–50 (2007)

  16. Rioul, O.: Information theoretic proofs of entropy power inequalities. IEEE Trans. Inf. Theory 57, 33 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Szarek, S.J., Voiculescu, D.: Shannon’s entropy power inequality via restricted Minkowski sums. In: Geometric aspects of functional analysis (Lecture Notes in Mathematics), vol. 1745 , Berlin, Germany: Springer, pp. 257–262 (2000)

  18. Wang, L., Madiman, M.: A new approach to the entropy power inequality, via rearrangements. In: Proc. 2006 IEEE Int’l Symp. Inf. Theory, Istanbul, Turkey, pp. 599–603 (2013)

  19. Wang, L., Madiman, M.: Beyond the entropy power inequality, via rearrangements. IEEE Trans. Inf. Theory 60, 5116 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dembo, A., Cover, T.M., Thomas, J.A.: Information theoretic inequalities. IEEE Trans. Inf. Theory 37, 1501 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  21. Madiman, M., Melbourne, J., Xu, P.: Forward and reverse entropy power inequalities in convex geometry. In: Carlen, E., Madiman, M., Werner, E. (eds.) Convexity and Concentration, The IMA Volumes in mathematics and its applications, vol. 161, pp. 427–485. Springer, New York, NY (2017)

  22. Rényi, A.: On measures of entropy and information. Proceedings Of the fourth berkeley symposium on mathematical statistics and probability, Volume 1: contributions to the theory of statistics. vol. 4 pp. 547-562 (1961)

  23. Baez, J.: Rényi entropy and free energy. Entropy 24, 706 (2022)

    Article  ADS  Google Scholar 

  24. Fuentes, J., Gonçalves, J.: Rényi entropy in statistical mechanics. Entropy 24, 1080 (2022)

    Article  Google Scholar 

  25. Pennini, F., Plastino, A.: Rényi’s Entropy, Statistical Order and van der Waals Gas. Entropy 24, 1067 (2022)

    Article  Google Scholar 

  26. Islam, R., Ma, R., Preiss, P., Tai, M.E., Lukin, A., Rispoli, M., Greiner, M.: Measuring entanglement entropy in a quantum many-body system. Nature 528, 77–83 (2015)

    Article  ADS  Google Scholar 

  27. Perlmutter, E.: A universal feature of CFT Rényi entropy. J. High Energy Phys. 2014, 1–22 (2014)

    Article  MATH  Google Scholar 

  28. Bobkov, S.G., Marsiglietti, A.: Variants of the entropy power inequality. IEEE Trans. Inf. Theory 63, 7747 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Bobkov, S.G., Chistyakov, G.P.: Entropy power inequality for the Rényi entropy. IEEE Trans. Inf. Theory 61, 708 (2015)

    Article  MATH  Google Scholar 

  30. Ram, E., Sason, I.: On Rényi entropy power inequality. IEEE Trans. Inf. Theory 62, 6800 (2016)

    Article  MATH  Google Scholar 

  31. Savaré, G., Toscani, G.: The concavity of Rényi entropy power. IEEE Trans. Inf. Theory 60, 2687 (2014)

    Article  MATH  Google Scholar 

  32. König, R., Smith, G.: The entropy power inequality for quantum systems. IEEE Trans. Inf. Theory 60, 1536 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. De Palma, G., Mari, A., Giovannetti, V.: A generalization of the entropy power inequality to bosonic quantum systems. Nat. Photon. 8, 958 (2014)

    Article  ADS  Google Scholar 

  34. Koenig, R.: The conditional entropy power inequality for Gaussian quantum states. J. Math. Phys. 56, 022201 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Jeong, K., Lee, S., Jeong, H.: Conditional quantum entropy power inequality for \(d\)-level quantum systems. J. Phys. A: Math. Theor. 51, 145303 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. De Palma, G., Trevisan, D.: The conditional entropy power inequality for bosonic quantum systems. Commun. Math. Phys. 360, 639 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. De Palma, G.: The entropy power inequality with quantum conditioning. J. Phys. A: Math. Theor. 52, 08LT03 (2019)

  38. Audenaert, K., Datta, N., Ozols, M.: Entropy power inequalities for qudits. J. Math. Phys. 57, 052202 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Guha, S., Erkmen, B.I., Shapiro, J.H.: The entropy photon-number inequality and its consequences. In: 2008 Inf. Theory Appl. Workshop, pp. 128–130 (2008)

  40. Smith, G., Yard, J.: Quantum communication with zero-capacity channels. Science 321, 1812 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Hastings, M.B.: Superadditivity of communication capacity using entangled inputs. Nat. Phys. 5, 255 (2009)

    Article  Google Scholar 

  42. Li, K., Winter, A., Zou, X.B., Guo, G.C.: Private capacity of quantum channels is not additive. Phys. Rev. Lett. 103, 120501 (2009)

    Article  ADS  Google Scholar 

  43. Leditzky, F., Leung, D., Siddhu, V., Smith, G., Smolin, J.A.: Generic Nonadditivity of Quantum Capacity in Simple Channels. Phys. Rev. Lett. 130, 200801 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  44. Holevo, A.S.: The additivity problem in quantum information theory. In: Proc. Int’l Cong. Math., Madrid, Spain, vol. 3, pp. 999–1018 (2006)

  45. König, R., Smith, G.: Limits on classical communication from quantum entropy power inequalities. Nat. Photon. 7, 142 (2013)

    Article  ADS  Google Scholar 

  46. König, R., Smith, G.: Classical capacity of quantum thermal noise channels to within 1.45 bits. Phys. Rev. Lett. 110, 040501 (2013)

  47. Huber, S., König, R.: Coherent state coding approaches the capacity of non-Gaussian bosonic channels. J. Phys. A: Math. Theor. 51, 184001 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Jeong, K., Lee, H.H., Lim, Y.: Universal upper bounds for Gaussian information capacity. Ann. Phys. 407, 46 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  49. Lim, Y., Lee, S., Kim, J., Jeong, K.: Upper bounds on the quantum capacity for a general attenuator and amplifier. Phys. Rev. A 99, 052326 (2019)

    Article  ADS  Google Scholar 

  50. Jeong, K.: Upper bounds on the private capacity for bosonic Gaussian channels. Phys. Lett. A 384, 126730 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  51. Lee, J., Jeong, K.: Quantum Rényi entropy functionals for bosonic gaussian systems. arXiv:2204.10737v2 (2023)

  52. Chen, X.-Y., Miao, M., Yin, R., Yuan, J.: Gaussian entanglement witness and refined Werner-Wolf criterion for continuous variables. Phys. Rev. A 107, 022410 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  53. Bu, K., Gu, W., Jaffe, A.: Quantum entropy and central limit theorem. Proc. Natl. Acad. Sci. 120, e2304589120 (2023)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) through a grant funded by the Ministry of Science and ICT (NRF-2022M3H3A1098237 & RS-2023-00211817) and the Ministry of Education (NRF-2021R1I1A1A01042199). This work was partly supported by Institute for Information & communications Technology Promotion (IITP) grant funded by the Ministry of Science and ICT (No. 2019-0-00003), and Korea Institute of Science and Technology Information (KISTI).

Author information

Authors and Affiliations

Authors

Contributions

K.J. conceived the idea and proved initial statements, and J.L. and H.Y. confirmed the proof. All authors wrote, reviewed, and agreed to submit the manuscript.

Corresponding author

Correspondence to Kabgyun Jeong.

Ethics declarations

Competing of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Yeo, H. & Jeong, K. Weighted p-Rényi Entropy Power Inequality: Information Theory to Quantum Shannon Theory. Int J Theor Phys 62, 253 (2023). https://doi.org/10.1007/s10773-023-05512-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05512-8

Keywords

Navigation