Skip to main content
Log in

Subfactors from Graphs Induced by Association Schemes

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We characterize anyonic systems algebraically by identifying the mathematical structures that support duality and fusion, Reidemeister moves, that are invariants of knots, braids, and modular data. The characterization is based on the connection between fusion algebras relevant in conformal field theories and character algebras related to association schemes. To make this abstract connection concrete, we provide the example of Hamming association schemes and relate them to representations of quantum groups \(SU_q(2)\) that are closely connected to \(SU(2)_k\) algebras whose fusion rules describe well known anyons. Our primary object of interest is the interacting Fock space which is deeply connected to an association scheme and the corresponding Bose-Mesner algebra, a combinatorial gadget with built-in duality and fusion rules, that leads to matrices (invariant under Reidemeister II and III moves in knots) which aid construction of subfactors with projections that braid. This way we set up a subfactor, a 3D topological quantum field theory, and a 2D rational conformal field theory and relate them to anyon systems described by fusion algebras. We discuss in detail a large family of graphs of self-dual association schemes that can be treated with this algebraic framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Data Availability

This manuscript has no associated data.

References

  1. Moore, G., Read, N.: Nonabelions in the fractional quantum Hall effect. Nucl. Phys. B 360, 362 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  2. Buican, M., Gromov, A.: Anyonic Chains, Topological Defects, and Conformal Field Theory. Commun. Math. Phys. 356, 1017–1056 (2017). https://doi.org/10.1007/s00220-017-2995-6

    Article  ADS  MathSciNet  Google Scholar 

  3. Fuchs, J.: Fusion rules in conformal field theory. Fortschr. Phys. 42(1), 1–48 (1994)

    Article  MathSciNet  Google Scholar 

  4. Alvarez-Gaumé, L., Gomez, C., Sierra, G.: Quantum group interpretation of some conformal field theories. Physics Letters B 220(1–2), 142–152 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  5. An invitation to the mathematics of topological quantum computation. J. Phys. Conf. Ser., 012012 (2016)

  6. Bruillard, P., Ng, S.-H., Rowell, E.C., Wang, Z.: Rank-finiteness for modular categories. J. Amer. Math. Soc. 29, 857–881 (2016)

    Article  MathSciNet  Google Scholar 

  7. Trebst, S., Troyer, M., Wang, Z., Ludwig, A.W.W.: A Short Introduction to Fibonacci Anyon Models. Prog. Theor. Phys Supp 176, 384–407 (2008)

    Article  ADS  Google Scholar 

  8. Curtin, Brian: Nomura, Kazumasa: Association Schemes Related to the Quantum Group \(U_q(sl_2)\). Algebr. Comb (Japanese) 1063, 129–139 (1998)

    Google Scholar 

  9. Bruillard, P., Rowell, E.: Modular Categories, Integrality and Egyptian Fractions. In: Proc. Amer. Math. Soc. 140(4), 1141–1150 (2012)

  10. Kaul, R.K.: The representations of Temperley-Lieb-Jones algebras. Nuclear Physics B 417, 267–285 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  11. Bannai, E.: Association schemes and fusion algebras (an introduction). J. Alg. Combin. 2, 327–344 (1993)

    Article  MathSciNet  Google Scholar 

  12. Gannon, T.: Modular data: the algebraic combinatorics of conformal field theory. J. Algebraic Combin. 22(2), 211–250 (2005)

    Article  MathSciNet  Google Scholar 

  13. Nomura, K.: A property of solutions of modular invariance equations for distance- regular graphs. Kyushu J. Math. 56, 53–57 (2002)

    Article  MathSciNet  Google Scholar 

  14. Balu, R.: Quantum Structures from Association Schemes 20, 42 (2020)

    ADS  MathSciNet  Google Scholar 

  15. Balu, R.: Quantum walks on regular graphs with realizations in a system of anyons. Quantum Information Processing 21, 177 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  16. Chan, A., Godsil, C.: Type-II matrices and combinatorial structures. Combinatorica 30, 1–24 (2010)

    Article  MathSciNet  Google Scholar 

  17. Pachos, J.: Introduction to Topological Quantum Computation. Cambridge University Press, Cambridge (2012). https://doi.org/10.1017/CBO9780511792908

  18. Freed, D.S.: The cobordism hypothesis. Bull. Amer. Math. Soc. (N.S.) 50(1), 57–92 (2013)

  19. Jones, V.F.R.: Index for subfactors. Inventiones Mathematicae 72, 1–25 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  20. Jones, V.F.R.: On knot invariants related to some statistical mechanical models. Pacific J. Math. 137, (1989)

  21. Nicoarǎ, Remus: Subfactors and Hadamard matrices. J. Operator Theory 64(2), 453–468 (2010). arXiv:0704.1128

  22. Jaeger, F., Matsumoto, M., Nomura, K.: Bose-Mesner algebras related with type II matrices and spin models. J. Algebraic Comb. 8, 39–72 (1998)

    Article  MathSciNet  Google Scholar 

  23. Jaeger, F.: Towards a classification of spin models in terms of association schemes, Progress in Algebraic Combinatorics. In: Bannai, E., Munemasa, A. (eds.) Advanced Studies in Pure Mathematics, vol. 24, pp. 197–225. Mathematical Society of Japan, Tokyo (1996)

    Google Scholar 

  24. Curtin, B.: Distance-regular graphs which support a spin model are thin. Discrete Math. 197–198, 205–216 (1999)

    Article  MathSciNet  Google Scholar 

  25. Vidali, J.: Description of the sage-drg package. Electron. J. Combin. 25(4), P421 (2018)

    Article  MathSciNet  Google Scholar 

  26. Hora, A., Obata, N.: Quantum Probability and Spectral Analysis of Graphs. Springer (2007)

  27. Accardi, L.: Quantum probability, Orthogonal Polynomials and Quantum Field Theory. J. Phys,: Conf. Ser. 819, 012001 (2017)

  28. Ocneanu, A.: Quantum symmetry, differential geometry of finite graphs and classification of subfactors, University of Tokyo Seminary Notes 45. Notes recorded by Y, Kawahigashi) (1991)

    Google Scholar 

  29. Accardi, L., Kuo, H.H., Stan, A.: Inf. Dim. Anal. Quant. Prob. Rel. Top. 7, 485–505 (2004)

    Article  Google Scholar 

  30. Godsil, C.D.: Generalized Hamming schemes. arXiv:1011.1044 (2010)

  31. Fairlie, D.B.: J. Phys. A: Math. Gen. 23, L183 (1990)

    Article  ADS  Google Scholar 

  32. Terwilliger, P.: Introduction to Leonard pairs OPSFA Rome 2001. J. Comput. Appl. Math. 153(2), 463–475 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  33. Kirillov, A., Reshetikhin, N.: In: New Developments in the Theory of Knots. World Scientific, Singapore (1989)

    Google Scholar 

  34. Kassel, C.: Quantum Groups. Springer, NewYork (1995)

    Book  Google Scholar 

  35. Huang, H.-W.: The Clebsch-Gordan Rule for U(sl2), the Krawtchouk Algebras and the Hamming Graphs. SIGMA 19, 17 (2023)

    Google Scholar 

  36. Evans, D.E., Kawahigashi, Y.: Subfactors and Mathematical Physics. Bull. Amer. Math. Soc., to appear (2003). arXiv:2303.04459

  37. Yu, N., Reshetikhin, V.G.: Turaev,: Invariants of 3D-manifolds via link polynomials and quantum groups. Invent. Math. 103, 547–597 (1991)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is grateful to Paul Terwilliger for suggesting, in a private communication, the conditions under which the Leonard pairs of q-Krawtchauk polynomials have \(u_q(2, C)\) modules. The author is grateful to the anonymos rereferee whose detailed feedback improved the presentation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

I am the sole author and worked on every aspects of the manuscript.

Corresponding author

Correspondence to Radhakrishnan Balu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balu, R. Subfactors from Graphs Induced by Association Schemes. Int J Theor Phys 62, 260 (2023). https://doi.org/10.1007/s10773-023-05510-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05510-w

Keywords

Navigation