Skip to main content
Log in

Newtonian Forces Exerted by Electromagnetic Waves Traveling into Matter

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Electromagnetic waves, developing in vacuum or into matter, produce dynamical alterations of the space-time metric. This is a consequence of Einstein’s equation, that we are able to solve explicitly in some circumstances. Solutions are in fact obtained by plugging on the right-hand side of the equation some appropriate energy tensors. Hence, the passage of a wave generates both electrodynamics and ‘gravitational’ (local and temporary) modifications of the molecular lattice of a dielectric. If the wave or the dielectric body are asymmetric, we could theoretically obtain a distribution of Newtonian-like forces with nonzero resultant. This hypothesis suggested a laboratory experiment where an electromagnetic signal applied to a ring with a particular geometry imparts a directional thrust in apparent violation of the action-reaction principle. This test was recently realized with success. Therefore, the present theoretical approach, once appropriately refined, may constitute a crucial referring point for further developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sabín, C., Bruschi, D.E., Ahmadi, M., Fuentes, I.: Phonon creation by gravitational waves. New J. Phys. 16, 085003 (2014)

    Article  ADS  Google Scholar 

  2. Nicolis, A., Penco, R.: Mutual interactions of phonons, rotons, and gravity. Phys. Rev. B 97, 134516 (2018)

    Article  ADS  Google Scholar 

  3. Kornreich, P.: Light induced gravity phonons. J. Modern Phys. 10, 1674–1695 (2019)

    Google Scholar 

  4. Esposito, A., Krichevsky, R., Nicolis, A.: Gravitational mass carried by sound waves. Phys. Rev. Lett. 122, 084501 (2019)

    Article  ADS  Google Scholar 

  5. Funaro, D., Chiolerio, A.: An efficient ring-shaped electromagnetic thruster. Inventions. 8(2), 51 (2023)

    Google Scholar 

  6. Shawyer, R.J.: Digitally controlled beam former for a spacecraft. US Patent 5543801 (2011)

  7. Shawyer, R.: Second generation EmDrive propulsion applied to SSTO launcher and interstellar probe. Acta Astronaut. 116, 166–174 (2015)

    Article  Google Scholar 

  8. Canning, F.X., Melcher, C., Winet, E.: Asymmetrical capacitors for propulsion. NASA Report: CR–2004–213312, Washington DC (2004)

  9. Milonni, P.W.: The Quantum Vacuum - An Introduction to Quantum Electrodynamics. Academic Press, Cambridge MA, USA (1993)

    Google Scholar 

  10. Cornille, P.: Advanced Electromagnetism and Vacuum Physics. SCCP, v. 21. World Scientific, Singapore (2004)

  11. Puthoff, H.E.: Advanced space propulsion based on vacuum (spacetime metric) engineering. JBIS. 63, 82–89 (2010)

    ADS  Google Scholar 

  12. Meis, C.: Light and Vacuum, 2nd edn. World Scientific, Singapore (2017)

    Book  MATH  Google Scholar 

  13. Cozzella, G., Landulfo, A.G.S., Matsas, G.E.A., Vanzella, D.A.T.: Proposal for observing the Unruh effect using classical electrodynamics. Phys. Rev. Lett. 118, 161102 (2017)

    Article  ADS  Google Scholar 

  14. Sudhir, V., Stritzelberger, N., Kempf, A.: Unruh effect of detectors with quantized center of mass. Phys. Rev. D. 103, 105023 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  15. Šoda, B., Sudhir, V., Kempf, A.: Acceleration-induced effects in stimulated light-matter interactions. Phys. Rev. Lett. 128, 163603 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  16. Fischer, U.R., Visser, M.: Warped space-time for phonons moving in a perfect nonrelativistic fluid. EPL 62(1), 1 (2003)

    Article  ADS  Google Scholar 

  17. Lobo, F., Visser, M.: Fundamental limitations on warp drive spacetimes. Classical Quantum Gravity. 21(24), 5871 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Lentz, E.W.: Breaking the warp barrier: hyper-fast solitons in Einstein-Maxwell-plasma theory. Classical Quantum Gravity. 38(7), 075015 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Arias, E., de Oliveira, T.R., Sarandy, M.S.: The Unruh quantum Otto engine. J. High Energ. Phys. 168 (2018)

  20. Pinheiro, M.J.: On Newton’s third law and its symmetry-breaking effects. Phys. Scr. 84, 055004 (2011)

    Article  ADS  MATH  Google Scholar 

  21. Szilard, L.: Uber die entropieverminderung in einem thermodynamischen system bei eingriffen intelligenter wesen. Zeitschrift fur Physik (in German) 53(11–12), 840–856 (1929)

    Article  ADS  MATH  Google Scholar 

  22. Leff, H.S., Rex, A.F. (eds.): Maxwell’s Demon 2 - Entropy, Classical and Quantum Information, Computing, 2nd edn. Inst. of Phys. Publishing, Bristol UK (2003)

  23. Rex, A.: Maxwell’s demon - A historical review. Entropy 19(6), 240 (2017)

  24. Alcubierre, M.: The warp drive: hyper-fast travel within general relativity. Classical Quantum Gravity. 11(5), L73–L77 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  25. Woodward, J.F.: A new experimental approach to Mach’s principle and relativistic graviation. Found. Phys. Lett. 3, 497–506 (1990)

    Article  Google Scholar 

  26. Buldrini, N., Tajmar, M., Marhold, K., Seifert, B.: Experimental results of the Woodward effect on a \(\mu \)N thrust balance. 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Sacramento CA (2006)

  27. Funaro, D.: Electromagnetism and the Structure of Matter. World Scientific, Singapore (2008)

    Book  MATH  Google Scholar 

  28. Funaro, D.: From Photons to Atoms - The Electromagnetic Nature of Matter. World Scientific, Singapore (2019)

    Book  Google Scholar 

  29. Funaro, D.: The space-time outside a pulsating charged sphere. Appl. Sci. 12(14), 7290 (2022)

    Article  Google Scholar 

  30. Jackson, J.D.: Classical Electrodynamics, 2nd edn. John Wiley & Sons, Hoboken NJ (1975)

    MATH  Google Scholar 

  31. Jeffrey, A.: Magnetohydrodynamics. Oliver & Boyd, Edinburgh (1966)

    MATH  Google Scholar 

  32. Davidson, P.A.: An Introduction to Magnetohydrodynamics. Oxford Univ. Press, London (2001)

    Book  MATH  Google Scholar 

  33. Molokov, S.S., Moreau, R., Moffatt, H.K. (eds.): Magnetohydrodynamics-Historical Evolution and Trends. Springer, New York NY (2007)

    MATH  Google Scholar 

  34. Born, M., Wolf, E.: Principles of Optics. Pergamon Press, Oxford, UK (1987)

    MATH  Google Scholar 

  35. Fock, V.: The Theory of Space. Time and Gravitation. Pergamon Press, London (1959)

    MATH  Google Scholar 

  36. Misner, C.W., Thorne, K.S.; Wheeler, J.A.: Gravitation, W.H. Freeman & c., San Francisco CA (1973)

  37. Brüesch, P.: Phonons–Theory and Experiments II–Experiments and Interpretation of Experimental Results. SSSOL, v. 65, Springer, Heidelberg (1986)

  38. Funaro, D.: Spacetime deformations of electromagnetic nature are far from negligible, hal.science/hal-04095803v1 (2023). This essay received an Honorable Mention in the 2023 Essay Competition of the Gravity Research Foundation

  39. Cohen-Tannoudji, C.N.: Manipulating atoms with photons - Nobel Lecture. Rev. Mod. Phys. 70, 707 (1998)

    Article  ADS  Google Scholar 

  40. Price, R.H., Pullin, J.: Colliding black holes - The close limit. Phys. Rev. Lett. 72, 3297 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Brügmann, B.: Binary black hole mergers in 3d numerical relativity. Int. J. Mod. Phys. D. 8, 85 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Pretorius, F.: Evolution of binary black hole spacetimes. Phys. Rev. Lett. 95, 121101 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  43. Chinosi, C., Della Croce, L., Funaro, D.: Rotating electromagnetic waves in toroid shaped regions. Int. J. Modern Phys. C. 21(1), 11–32 (2010)

    Article  ADS  MATH  Google Scholar 

  44. Funaro, D.: Trapping electromagnetic solitons in cylinders. Math. Model. Anal. 19(1), 44–51 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  45. Funaro, D.: High frequency electrical oscillations in cavities. Math. Model. Anal. 23(3), 345–358 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  46. Funaro, D.: Electromagnetic waves in annular regions. Appl. Sci. 10(5), 1780 (2010)

    Article  Google Scholar 

  47. Shariff, K., Leonard, A.: Vortex rings. Annual Rev. Fluid Mech. 24, 235 (1992)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Funaro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Funaro, D. Newtonian Forces Exerted by Electromagnetic Waves Traveling into Matter. Int J Theor Phys 62, 231 (2023). https://doi.org/10.1007/s10773-023-05491-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05491-w

Keywords

Navigation