Skip to main content

Advertisement

Log in

Routing Strategy for Distributed Quantum Circuit based on Optimized Gate Transmission Direction

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Due to the limitations of quantum device manufacturing technology, the number of qubits in current quantum computing devices is still relatively limited. Distributed quantum computing, as an emerging quantum computing paradigm, aims to achieve larger-scale quantum computation. To reduce the cost of state transfer and routing in distributed quantum circuits, this paper focuses on the transmission direction of global gates generated after quantum circuit partitioning. We provide a threshold for the number of state transfers required for converting global gates to local gates in the entire circuit. We propose a method to evaluate the quality of transmission directions and utilize a genetic algorithm to find the optimal transmission directions for minimizing the transmission cost of distributed quantum circuit. Based on the optimized transmission directions, this paper maps the qubits in the logical circuit to a distributed quantum architecture model and presents a method for converting global gates to local gates in the quantum circuit. The routing process of distributed quantum circuits is simulated. Experimental results show that compared to existing methods for reducing the number of state transfers, the proposed algorithm can achieve a lower overall cost for executing distributed quantum circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Algorithm 1
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

All data generated or used during the study appear in the submitted articles.

References

  1. Mandal, S., Zamindar, S., Sarkar, S., Murmu, M., Guo, L., Kaya, S., Hirani, H., Banerjee, P.: Quantum chemical and molecular dynamics simulation approach to investigate adsorption behaviour of organic azo dyes on tio2 and zno surfaces. J Adhes. Sci. Technol. 37(10), 1649–1665 (2023)

    Article  Google Scholar 

  2. Krenn, M., Landgraf, J., Foesel, T., Marquardt, F.: Artificial intelligence and machine learning for quantum technologies. Phys. Rev. A 107(1), 010101 (2023)

    Article  ADS  Google Scholar 

  3. Mezquita, Y., Alonso, R.S., Casado-Vara, R., Prieto, J., Corchado, J.M.: A review of k-nn algorithm based on classical and quantum machine learning. In: Distributed computing and artificial intelligence, Special sessions, 17th International conference, pp. 189–198. Springer (2021)

  4. Pirandola, S., Andersen, U.L., Banchi, L., Berta, M., Bunandar, D., Colbeck, R., Englund, D., Gehring, T., Lupo, C., Ottaviani, C., et al.: Advances in quantum cryptography. Adv. Opt. Photon. 12(4), 1012–1236 (2020)

    Article  Google Scholar 

  5. Alagic, G., Alperin-Sheriff, J., Apon, D., Cooper, D., Dang, Q., Kelsey, J., Liu, Y.-K., Miller, C., Moody, D., Peralta, R., et al.: Status report on the second round of the nist post-quantum cryptography standardization process. US Department of Commerce, NIST 2 (2020)

  6. Barkoutsos, P.K., Nannicini, G., Robert, A., Tavernelli, I., Woerner, S.: Improving variational quantum optimization using cvar. Quantum 4, 256 (2020)

    Article  Google Scholar 

  7. Preskill, J.: Quantum computing in the nisq era and beyond. Quantum 2, 79 (2018)

    Article  Google Scholar 

  8. Monroe, C., Raussendorf, R., Ruthven, A., Brown, K.R., Maunz, P., Duan, L.-M., Kim, J.: Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Phys. Rev. A 89(2), 022317 (2014)

    Article  ADS  Google Scholar 

  9. Laracuente, N., Smith, K.N., Imany, P., Silverman, K.L., Chong, F.T.: Short-range microwave networks to scale superconducting quantum computation. arXiv:2201.08825 (2022)

  10. Pirandola, S., Eisert, J., Weedbrook, C., Furusawa, A., Braunstein, S.L.: Advances in quantum teleportation. Nature Photonics 9(10), 641–652 (2015)

    Article  ADS  Google Scholar 

  11. LaRacuente, N., Smith, K., Imany, P., Silverman, K., Chong, F.: Modeling short-range microwave networks to scale superconducting quantum computation. arXiv:2201.08825 v2 (2023)

  12. Gold, A., Paquette, J., Stockklauser, A., Reagor, M.J., Alam, M.S., Bestwick, A., Didier, N., Nersisyan, A., Oruc, F., Razavi, A., et al.: Entanglement across separate silicon dies in a modular superconducting qubit device. npj Quant. Inf. 7(1), 142 (2021)

  13. Hamilton, M.C., Yelamanchili, B., Shah, A., Peek, S.E., Bankson, S., Tillman, C.C.: Superconducting microwave interconnect technologies for quantum and cryogenic systems. In: 2022 IEEE/MTT-S International Microwave Symposium-IMS 2022, pp. 72–75. IEEE (2022)

  14. Stassi, R., Cirio, M., Nori, F.: Scalable quantum computer with superconducting circuits in the ultrastrong coupling regime. npj Quant. Inf. 6(1), 67 (2020)

  15. Andres-Martinez, P., Heunen, C.: Automated distribution of quantum circuits via hypergraph partitioning. Phys. Rev. A 100(3), 032308 (2019)

    Article  ADS  Google Scholar 

  16. Davarzani, Z., Zomorodi-Moghadam, M., Houshmand, M., Nouri-Baygi, M.: A dynamic programming approach for distributing quantum circuits by bipartite graphs. Quant. Inf. Process. 19, 1–18 (2020)

    Article  MathSciNet  Google Scholar 

  17. Nikahd, E., Mohammadzadeh, N., Sedighi, M., Zamani, M.S.: Automated window-based partitioning of quantum circuits. Phys. Scr. 96(3), 035102 (2021)

    Article  ADS  Google Scholar 

  18. Davarzani, Z., Zomorodi, M., Houshmand, M.: A hierarchical approach for building distributed quantum systems. Sci. Rep. 12(1), 15421 (2022)

    Article  ADS  Google Scholar 

  19. Zomorodi-Moghadam, M., Houshmand, M., Houshmand, M.: Optimizing teleportation cost in distributed quantum circuits. Int. J Theor. Phys. 57, 848–861 (2018)

    Article  MathSciNet  Google Scholar 

  20. Dadkhah, D., Zomorodi, M., Hosseini, S.E.: A new approach for optimization of distributed quantum circuits. International J Theor. Phys. 60, 3271–3285 (2021)

    Article  ADS  Google Scholar 

  21. Daei, O., Navi, K., Zomorodi, M.: Improving the teleportation cost in distributed quantum circuits based on commuting of gates. Int. J Theor. Phys. 60(9), 3494–3513 (2021)

    Article  MathSciNet  Google Scholar 

  22. Ghodsollahee, I., Davarzani, Z., Zomorodi, M., Pławiak, P., Houshmand, M., Houshmand, M.: Connectivity matrix model of quantum circuits and its application to distributed quantum circuit optimization. Quant. Inf. Process. 20, 1–21 (2021)

    Article  MathSciNet  Google Scholar 

  23. Zhong, Y., Chang, H.-S., Bienfait, A., Dumur, É., Chou, M.-H., Conner, C.R., Grebel, J., Povey, R.G., Yan, H., Schuster, D.I., et al.: Deterministic multi-qubit entanglement in a quantum network. Nature 590(7847), 571–575 (2021)

    Article  ADS  Google Scholar 

  24. Magnard, P., Storz, S., Kurpiers, P., Schär, J., Marxer, F., Lütolf, J., Walter, T., Besse, J.-C., Gabureac, M., Reuer, K., et al.: Microwave quantum link between superconducting circuits housed in spatially separated cryogenic systems. Phys. Rev. Lett. 125(26), 260502 (2020)

    Article  ADS  Google Scholar 

  25. Niu, J., Zhang, L., Liu, Y., Qiu, J., Huang, W., Huang, J., Jia, H., Liu, J., Tao, Z., Wei, W., et al.: Low-loss interconnects for modular superconducting quantum processors. Nature Electron. 6(3), 235–241 (2023)

    Article  Google Scholar 

  26. Yan, H., Zhong, Y., Chang, H.-S., Bienfait, A., Chou, M.-H., Conner, C.R., Dumur, É., Grebel, J., Povey, R.G., Cleland, A.N.: Entanglement purification and protection in a superconducting quantum network. Phys. Rev. Lett. 128(8), 080504 (2022)

    Article  ADS  Google Scholar 

  27. Conner, C., Bienfait, A., Chang, H.-S., Chou, M.-H., Dumur, É., Grebel, J., Peairs, G., Povey, R., Yan, H., Zhong, Y., et al.: Superconducting qubits in a flip-chip architecture. Applied Physics Letters 118(23) (2021)

  28. Cheng, X., Chen, X., Cao, K., Zhu, P., Feng, S., Guan, Z.: Optimization of the transmission cost of distributed quantum circuits based on merged transfer. Quant. Inf. Process. 22(5), 187 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  29. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)

    Article  ADS  Google Scholar 

  30. Houshmand, M., Mohammadi, Z., Zomorodi-Moghadam, M., Houshmand, M.: An evolutionary approach to optimizing teleportation cost in distributed quantum computation. Int. J Theor. Phys. 59, 1315–1329 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China under Grant number 62072259, in part by the PhD Start-up Fund of Nantong University under Grant number 23B03, in part by the Postgraduate Research and Practice Innovation Program of Jiangsu Province under Grant number SJCX23_1780.

Author information

Authors and Affiliations

Authors

Contributions

Zilu Chen and Xinyu Chen provide conceptualization of the article. Zilu Chen and Yibo Jiang write software. Zilu Chen writes the main manuscript text. Xueyun Cheng and Zhijin Guan participate in writing comments and process supervision. Zhijin Guan is responsible for project management and providing financial support. All authors have reviewed and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Xueyun Cheng or Zhijin Guan.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Chen, X., Jiang, Y. et al. Routing Strategy for Distributed Quantum Circuit based on Optimized Gate Transmission Direction. Int J Theor Phys 62, 255 (2023). https://doi.org/10.1007/s10773-023-05489-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05489-4

Keywords

Navigation