Skip to main content
Log in

Variational Quantum Computation Integer Factorization Algorithm

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The integer factorization problem is a major challenge in the field of computer science, and Shor’s algorithm provides a promising solution for this problem. However, Shor’s algorithm involves complex modular exponentiation computation, which leads to the construction of complicated quantum circuits. Moreover, the precision of continued fraction computations in Shor’s algorithm is influenced by the number of qubits, making it difficult to implement the algorithm on Noisy Intermediate-Scale Quantum (NISQ) computers. To address these issues, this paper proposes variational quantum computation integer factorization (VQCIF) algorithm based on variational quantum algorithm (VQA). Inspired by classical computing, this algorithm utilizes the parallelism of quantum computing to calculate the product of parameterized quantum states. Subsequently, the quantum multi-control gate is used to map the product satisfying \(pq=N\) onto an auxiliary qubit. Then the variational quantum circuit is adjusted by the optimizer, and it is possible to obtain a prime factor of the integer N with a high probability. While maintaining generality, VQCIF has a simple quantum circuit structure and requires only \(2n+1\) qubits. Furthermore, the time complexity is exponentially accelerated. VQCIF algorithm is implemented using the Qiskit framework, and tests are conducted on factorization instances to demonstrate its feasibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Algorithm 1
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and materials

The datasets used or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Bhatia, V., Ramkumar, K.R.: An efficient quantum computing technique for cracking rsa using shor’s algorithm. In: 2020 IEEE 5th international conference on computing communication and automation (ICCCA), pp. 89–94 (2020). https://doi.org/10.1109/ICCCA49541.2020.9250806

  2. Maslov, D., Nam, Y., Kim, J.: An outlook for quantum computing [point of view]. Proc. IEEE. 107(1), 5–10 (2019). https://doi.org/10.1109/JPROC.2018.2884353

    Article  Google Scholar 

  3. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th annual symposium on foundations of computer science, pp. 124–134 (1994). https://doi.org/10.1109/SFCS.1994.365700

  4. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the twenty-eighth annual acm symposium on theory of computing. STOC ’96, pp. 212–219. Association for Computing Machinery, New York, NY, USA (1996). https://doi.org/10.1145/237814.237866

  5. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103, 150502 (2009). https://doi.org/10.1103/PhysRevLett.103.150502

    Article  ADS  MathSciNet  Google Scholar 

  6. Li, Z., Liu, X., Xu, N., Du, J.: Experimental realization of a quantum support vector machine. Phys. Rev. Lett. 114, 140504 (2015). https://doi.org/10.1103/PhysRevLett.114.140504

    Article  ADS  Google Scholar 

  7. Li, H., Jiang, N., Zhang, R., Wang, Z., Wang, H.: Quantum support vector machine based on gradient descent. Int. J. Theor. Phys. 61(3), 92 (2022). https://doi.org/10.1007/s10773-022-05040-x

    Article  MathSciNet  MATH  Google Scholar 

  8. Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis. Nat. Phys. 10(9), 631–633 (2014). https://doi.org/10.1038/nphys3029

    Article  Google Scholar 

  9. Kerenidis, I., Landman, J.: Quantum spectral clustering. Phys. Rev. A. 103, 042415 (2021). https://doi.org/10.1103/PhysRevA.103.042415

    Article  ADS  MathSciNet  Google Scholar 

  10. Li, Q., Huang, Y., Jin, S., Hou, X., Wang, X.: Quantum spectral clustering algorithm for unsupervised learning. Sci. China Inf. Sci. 65(10), 200504 (2022). https://doi.org/10.1007/s11432-022-3492-x

    Article  MathSciNet  Google Scholar 

  11. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM. 21(2), 120–126 (1978). https://doi.org/10.1145/359340.359342

    Article  MathSciNet  MATH  Google Scholar 

  12. Benenti, G., Casati, G., Rossini, D., Strini, G.: Principles of Quantum Computation and Information. World Scientific, Singapore (2019). https://doi.org/10.1142/9789813237230_0001

  13. Beauregard, S.: Circuit for shor’s algorithm using 2n+3 qubits. Quantum Info. Comput. 3(2), 175–185 (2003). https://doi.org/10.5555/2011517.2011525

    Article  MathSciNet  MATH  Google Scholar 

  14. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667

  15. Häner, T., Roetteler, M., Svore, K.M.: Factoring using \(2n + 2\) qubits with toffoli based modular multiplication. Quantum Info. Comput. 17(7–8), 673–684 (2017). https://doi.org/10.5555/3179553.3179560

  16. Gamel, O., James, D.F.V.: Simplified Factoring Algorithms for Validating Small-Scale Quantum Information Processing Technologies (2013). https://doi.org/10.48550/arXiv.1310.6446

  17. Geller, M.R., Zhou, Z.: Factoring 51 and 85 with 8 qubits. Sci Rep. 3(1), 3023 (2013). https://doi.org/10.1038/srep03023

    Article  ADS  Google Scholar 

  18. Xiao, L., Qiu, D., Luo, L., Mateus, P.: Distributed shor’s algorithm. Quantum Inform. Comput. 23(1-2), 27–44 (2023). https://doi.org/10.26421/QIC23.1-2-3

  19. Xiao, L., Qiu, D., Luo, L., Mateus, P.: Distributed Quantum-classical Hybrid Shor’s Algorithm (2023). https://doi.org/10.48550/arXiv.2304.12100

  20. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels. Phys Rev Lett. 70(13), 1895 (1993). https://doi.org/10.1103/PhysRevLett.70.1895

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Wang, B., Hu, F., Yao, H., Wang, C.: Prime factorization algorithm based on parameter optimization of ising model. Sci. Rep. 10(1), 7106 (2020). https://doi.org/10.1038/s41598-020-62802-5

    Article  ADS  Google Scholar 

  22. Anschuetz, E., Olson, J., Aspuru-Guzik, A., Cao, Y.: Variational quantum factoring. In: Feld, S., Linnhoff-Popien, C. (eds.) Quantum Technology and Optimization Problems, pp. 74–85. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14082-3_7

  23. Choi, J., Kim, J.: A tutorial on quantum approximate optimization algorithm (qaoa): Fundamentals and applications. In: 2019 international conference on information and communication technology convergence (ICTC), pp. 138–142 (2019). https://doi.org/10.1109/ICTC46691.2019.8939749

  24. Preskill, J.: Quantum Computing in the NISQ era and beyond. Quantum. 2, 79 (2018). https://doi.org/10.22331/q-2018-08-06-79

  25. Cerezo, M., Arrasmith, A., Babbush, R., Benjamin, S.C., Endo, S., Fujii, K., McClean, J.R., Mitarai, K., Yuan, X., Cincio, L., et al.: Variational quantum algorithms. Nat. Rev. Phys. 3(9), 625–644 (2021). https://doi.org/10.1038/s42254-021-00348-9

    Article  Google Scholar 

  26. Treinish, M., Gambetta, J., Thomas, S., qiskit-bot, Nation, P., Kassebaum, P., Arellano, E., Rodríguez, D.M., Puente González, S., Bello, L., Lishman, J., Hu, S., Garrison, J., Huang, J., Krsulich, K., Yu, J., Gacon, J., Marques, M., McKay, D., Gomez, J., Capelluto, L., Wood, S., Travis-S-IBM, Mitchell, A., Panigrahi, A., Hartman, K., lerongil, Rahman, R.I., Itoko, T., Pozas-Kerstjens, A.: Qiskit/qiskit-metapackage: Qiskit 0.43.2. https://doi.org/10.5281/zenodo.8090426

  27. Schuld, M., Petruccione, F.: Supervised Learning with Quantum Computers vol. 17. Springer, Switzerland (2018). https://doi.org/10.1007/978-3-319-96424-9

  28. Schuld, M.: Supervised quantum machine learning models are kernel methods. arXiv preprint arXiv:2101.11020. (2021) https://doi.org/10.48550/arXiv.2101.11020

  29. Araujo, I.F., Park, D.K., Ludermir, T.B., Oliveira, W.R., Petruccione, F., Silva, A.J.: Configurable sublinear circuits for quantum state preparation. Quantum Inf. Process. 22(2), 123 (2023). https://doi.org/10.1007/s11128-023-03869-7

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Ghosh, K.: Encoding classical data into a quantum computer (2021). https://doi.org/10.48550/arXiv.2107.09155

  31. Havlíček, V., Córcoles, A.D., Temme, K., Harrow, A.W., Kandala, A., Chow, J.M., Gambetta, J.M.: Supervised learning with quantum-enhanced feature spaces. Nature. 567(7747), 209–212 (2019). https://doi.org/10.1038/s41586-019-0980-2

    Article  ADS  Google Scholar 

  32. LaRose, R., Coyle, B.: Robust data encodings for quantum classifiers. Phys. Rev. A. 102, 032420 (2020). https://doi.org/10.1103/PhysRevA.102.032420

    Article  ADS  Google Scholar 

  33. Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Adv. Quantum Technol. 2(12), 1900070 (2019). https://doi.org/10.1002/qute.201900070

    Article  Google Scholar 

  34. Kandala, A., Mezzacapo, A., Temme, K., Takita, M., Brink, M., Chow, J.M., Gambetta, J.M.: Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. nature. 549(7671), 242–246 (2017). https://doi.org/10.1038/nature23879

  35. Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Phys. Rev. A. 99, 032331 (2019). https://doi.org/10.1103/PhysRevA.99.032331

    Article  ADS  Google Scholar 

  36. Stokes, J., Izaac, J., Killoran, N., Carleo, G.: Quantum Natural Gradient. Quantum. 4, 269 (2020). https://doi.org/10.22331/q-2020-05-25-269

  37. Gacon, J., Zoufal, C., Carleo, G., Woerner, S.: Simultaneous Perturbation Stochastic Approximation of the Quantum Fisher Information. Quantum. 5, 567 (2021). https://doi.org/10.22331/q-2021-10-20-567

  38. Powell, M.J.: A Direct Search Optimization Method that Models the Objective and Constraint Functions by Linear Interpolation. Springer, Dordrecht (1994). https://doi.org/10.1007/978-94-015-8330-5_4

  39. Ruiz-Perez, L., Garcia-Escartin, J.C.: Quantum arithmetic with the quantum fourier transform. Quantum Inf. Process. 16, 1–14 (2017). https://doi.org/10.1007/s11128-017-1603-1

    Article  MathSciNet  MATH  Google Scholar 

  40. Weinstein, Y.S., Pravia, M.A., Fortunato, E.M., Lloyd, S., Cory, D.G.: Implementation of the quantum fourier transform. Phys. Rev. Lett. 86, 1889–1891 (2001). https://doi.org/10.1103/PhysRevLett.86.1889

    Article  ADS  Google Scholar 

  41. Silva, A.J., Park, D.K.: Linear-depth quantum circuits for multiqubit controlled gates. Phys. Rev. A. 106, 042602 (2022). https://doi.org/10.1103/PhysRevA.106.042602

    Article  ADS  MathSciNet  Google Scholar 

  42. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys Rev A. 52(5), 3457 (1995). https://doi.org/10.1103/PhysRevA.52.3457

    Article  ADS  Google Scholar 

Download references

Funding

This work is supported by the Beijing Natural Science Foundation No.4212015.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Dr. Xinglan Zhang provided guidance for the experimental work and manuscript writing, as well as offered assistance in securing funding. Experimental preparation and analysis were performed by Feng Zhang. Xinglan Zhang and Feng Zhang wrote the main manuscript text. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Feng Zhang.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (zip 7771 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhang, F. Variational Quantum Computation Integer Factorization Algorithm. Int J Theor Phys 62, 245 (2023). https://doi.org/10.1007/s10773-023-05473-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05473-y

Keywords

Navigation