Skip to main content
Log in

The Parabolic-Gaussian Potential and Phonon Effects on the Polaron Levels in Alkali Halogen Ionic Crystal Quantum Wells

  • RESEARCH
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this current study, we theoretically study how anisotropic parabolic potential affects polaron n excited state in strongly coupled polar crystals (KBr, KCl, RbCl) in asymmetric Gaussian potential quantum wells, through the combined approach of one unitary transformation and linear combination operator. In the restriction limit of strong coupling, we derive rigorous results for excited state energy. By using this combination method, polaron energy and electron energy are compared which energy both polaron and electron is affected by confined potential. In addition, the relationship between energy difference and coupling strength is also discussed. It is hoped that the theoretical results reveal a promising and importance of further study of polaron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

No data was used for the research described in the article.

References

  1. Will, M., Astrakharchik, G.E., Fleischhauer, M.: Polaron interactions and bipolarons in one-dimensional Bose gases in the strong coupling regime. Phys. Rev. Lett. 127(10), 103401 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  2. Goldstein, T., Wu, Y.C., Chen, S.Y., et al.: Ground and excited state exciton polarons in monolayer MoSe2. J. Chem. Phys. 153(7), 071101 (2020)

    Article  Google Scholar 

  3. Kang, M., Jung, S.W., Shin, W.J., et al.: Holstein polaron in a valley-degenerate two-dimensional semiconductor. Nat. Mater. 17(8), 676–680 (2018)

    Article  ADS  Google Scholar 

  4. Miyata, K., Zhu, X.Y.: Ferroelectric large polarons. Nat. Mater. 17(5), 379–381 (2018)

    Article  ADS  Google Scholar 

  5. Bombile, J.H., Janik, M.J., Milner, S.T.: Polaron formation mechanisms in conjugated polymers. Phys. Chem. Chem. Phys. 20(1), 317–331 (2018)

    Article  Google Scholar 

  6. Van Loon, S., Casteels, W., Tempere, J.: Ground-state properties of interacting Bose polarons. Phys. Rev. A 98(6), 063631 (2018)

    Article  ADS  Google Scholar 

  7. Alexandrov, A.S.: Superconducting polarons and bipolarons[M]//Polarons in Advanced Materials, pp. 257–310. Springer, Dordrecht (2007)

    Google Scholar 

  8. Sio, W.H., Verdi, C., Poncé, S., et al.: Polarons from first principles, without supercells. Phys. Rev. Lett. 122(24), 246403 (2019)

    Article  ADS  Google Scholar 

  9. Miyata, K., Meggiolaro, D., Trinh, M.T., et al.: Large polarons in lead halide perovskites. Sci. Adv. 3(8), e1701217 (2017)

    Article  ADS  Google Scholar 

  10. Sio, W.H., Verdi, C., Poncé, S., et al.: Ab initio theory of polarons: formalism and applications. Phys. Rev. B 99(23), 235139 (2019)

    Article  ADS  Google Scholar 

  11. Goodvin, G.L., Berciu, M., Sawatzky, G.A.: Green’s function of the Holstein polaron. Phys. Rev. B 74(24), 245104 (2006)

    Article  ADS  Google Scholar 

  12. Mishchenko, A.S., Nagaosa, N., Prokof’ev, N.: Diagrammatic Monte Carlo method for many-polaron problems. Phys. Rev. Lett. 113(16), 166402 (2014)

    Article  ADS  Google Scholar 

  13. Mishchenko, A.S., Pollet, L., Prokof’ev, N.V., et al.: Polaron mobility in the “beyond quasiparticles” regime. Phys. Rev. Lett. 123(7), 076601 (2019)

    Article  ADS  Google Scholar 

  14. Hahn, T., Klimin, S., Tempere, J., et al.: Diagrammatic Monte Carlo study of Fröhlich polaron dispersion in two and three dimensions. Phys. Rev. B 97(13), 134305 (2018)

    Article  ADS  Google Scholar 

  15. Ghosh, R., Chew, A.R., Onorato, J., et al.: Spectral signatures and spatial coherence of bound and unbound polarons in p3ht films: theory versus experiment. J. Phys. Chem. C. 122(31), 18048–18060 (2018)

    Article  Google Scholar 

  16. Franchini, C., Reticcioli, M., Setvin, M., et al.: Polarons in materials. Nat. Rev. Mater. 6(7), 560–586 (2021)

    Article  ADS  Google Scholar 

  17. Ghosh, R., Spano, F.C.: Excitons and polarons in organic materials. Acc. Chem. Res. 53(10), 2201–2211 (2020)

    Article  Google Scholar 

  18. Grusdt, F.: All-coupling theory for the Fröhlich polaron. Phys. Rev. B 93(14), 144302 (2016)

    Article  ADS  Google Scholar 

  19. Mordovina, U., Bungey, C., Appel, H., et al.: Polaritonic coupled-cluster theory. Phys. Rev. Res. 2(2), 023262 (2020)

    Article  Google Scholar 

  20. Seiringer, R.: The polaron at strong coupling. Rev. Math. Phys. 33(01), 2060012 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  21. Guenther, N.E., Massignan, P., Lewenstein, M., et al.: Bose polarons at finite temperature and strong coupling. Phys. Rev. Lett. 120(5), 050405 (2018)

    Article  ADS  Google Scholar 

  22. Grusdt, F., Schmidt, R., Shchadilova, Y.E., et al.: Strong-coupling Bose polarons in a Bose-Einstein condensate. Phys. Rev. A 96(1), 013607 (2017)

    Article  ADS  Google Scholar 

  23. Ardila, L.A.P., Astrakharchik, G.E., Giorgini, S.: Strong coupling Bose polarons in a two-dimensional gas. Phys. Rev. Res. 2(2), 023405 (2020)

    Article  Google Scholar 

  24. Zheng, K., Abdellah, M., Zhu, Q., et al.: Direct experimental evidence for photoinduced strong-coupling polarons in organolead halide perovskite nanoparticles. J. Phys. Chem. Lett. 7(22), 4535–4539 (2016)

    Article  Google Scholar 

  25. Srimath Kandada, A.R., Silva, C.: Exciton polarons in two-dimensional hybrid metal-halide perovskites. J. Phys. Chem. Lett. 11(9), 3173–3184 (2020)

    Article  Google Scholar 

  26. Lee, T.D., Low, F.E., Pines, D.: The motion of slow electrons in a polar crystal. Phys. Rev. 90(2), 297 (1953)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Huybrechts, W.J.: Internal excited state of the optical polaron. J. Phys. C: Solid State Phys. 10(19), 3761 (1977)

    Article  ADS  Google Scholar 

  28. Polarons in ionic crystals and polar semiconductors: Antwerp Advanced Study Institute 1971 on Fröhlich Polarons and Electron-phonon interaction in polar semiconductors[M]. North-Holland Publishing Company 721 (1972)

  29. Khordad, R., Goudarzi, S., Bahramiyan, H.: Effect of temperature on lifetime and energy states of bound polaron in asymmetrical Gaussian quantum well. Indian J. Phys. 90(6), 659–664 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The project is supported by the National Natural Science Foundation of China (12164032 and 11964026), the Natural Science Foundation of Inner Mongolia (No. 2019MS01010, 2022MS01014), Doctor Research Start-up Fund of Inner Mongolia Minzu University (BS625), and Scientific Research Projects in Colleges and Universities in Inner Mongolia (No. NJZZ19145)

Author information

Authors and Affiliations

Authors

Contributions

Jian Cui: Visualization, Investigation Data duration, Writing-Original draft preparation,Methodology, Software, Conceptualization, Methodology, Numerical Calculation, Supervision Yong Sun: Conceptualization, Methodology, Software, Conceptualization, Methodology, Numerical Calculation, Supervision. Shuang Han: Conceptualization, Methodology, Data duration, Numerical Calculation, Supervision. Wei Zhang: Conceptualization, Methodology, Data duration, Numerical Calculation, Supervision. Ran An: Conceptualization, Methodology, Data duration, Numerical Calculation, Supervision. Xin-Jun Ma: Visualization, Investigation Data duration, Writing-Original draft preparation. Pei-Fang Li: Visualization, Investigation Data duration, Writing-Original draft preparation. Jing-Lin Xiao: Conceptualization, Methodology, Supervision.

Corresponding author

Correspondence to Yong Sun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, J., Sun, Y., Han, S. et al. The Parabolic-Gaussian Potential and Phonon Effects on the Polaron Levels in Alkali Halogen Ionic Crystal Quantum Wells. Int J Theor Phys 62, 217 (2023). https://doi.org/10.1007/s10773-023-05471-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05471-0

Keywords

PACS Numbers

Navigation