Skip to main content
Log in

Thermo-Statistical Properties and Magnetic Susceptibility of Ideal Fermi Gases Under the Generalized Uncertainty Principle

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We study the high and low-temperature thermo-statistical properties of ideal Fermi gases by taking into account the effect of generalized uncertainty principle (GUP). Starting with the logarithm of the grand partition function of ideal Fermi system, we derive the total number of particles, internal energy, entropy, and heat capacity under the GUP. For high temperatures, by obtaining a virial expansion of the equation of state of the system, the fist three virial coefficients are calculated. For low temperatures, by using the chemical potential of the system, the susceptibility for Pauli paramagnetism is derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kempf, A., Mangano, G., Mann, R.B.: Phys. Rev. D 52, 1108 (1995)

    ADS  MathSciNet  Google Scholar 

  2. Maggiore, M.: Phys. Rev. D 49, 5182 (1994)

    ADS  MathSciNet  Google Scholar 

  3. Scardigli, F.: Phys. Lett. B 452, 39 (1999)

    ADS  Google Scholar 

  4. Maggiore, M.: Phys. Lett. B 319, 83 (1993)

    ADS  MathSciNet  Google Scholar 

  5. Adler, R.J., Chen, P., Santiago, D.I.: Gen. Relativ. Grav. 33, 2101 (2001)

    ADS  Google Scholar 

  6. Medved, A.J.M., Vagenas, E.C.: Phys. Rev. D 70, 124021 (2004)

    ADS  MathSciNet  Google Scholar 

  7. Myung, Y.S., Kim, Y.W., Park, Y.J.: Phys. Lett. B 645, 393 (2007)

    ADS  MathSciNet  Google Scholar 

  8. Park, M.I.: Phys. Lett. B 659, 698 (2008)

    ADS  MathSciNet  Google Scholar 

  9. Nozari, K., Mehdipour, S.H.: EPL 84, 20008 (2008)

    ADS  Google Scholar 

  10. Zhu, T., Ren, J.R., Li, M.F.: Phys. Lett. B 674, 204 (2009)

    ADS  MathSciNet  Google Scholar 

  11. Das, S., Mann, R.B.: Phys. Lett. B 704, 596 (2011)

    ADS  Google Scholar 

  12. Sprenger, M., Bleicher, M., Nicolini, P.: Class. Quantum Grav. 28, 235019 (2011)

    ADS  Google Scholar 

  13. Chemissany, W., Das, S., Ali, A.F., Vagenas, E.C.: JCAP 1112, 017 (2011)

    ADS  Google Scholar 

  14. Nozari, K., Pedram, P., Molkara, M.: Int. J. Theor. Phys. 51, 1268 (2012)

    Google Scholar 

  15. Pikovski, I., Vanner, M.R., Aspelmeyer, M., Kim, M.S., Brukner, C.: Nature Phys. 8, 393 (2012)

    ADS  Google Scholar 

  16. Majumder, B.: Gen. Relativ. Gravit. 45, 2403 (2013)

    ADS  Google Scholar 

  17. Chen, D.Y., Wu, H.W., Yang, H.T.: Adv. High Energy Phys. 2013, 432412 (2013)

    Google Scholar 

  18. Anacleto, M.A., Brito, F.A., Passos, E.: Phys. Lett. B 749, 181 (2015)

    ADS  Google Scholar 

  19. Paliathanasis, A., Pan, S., Pramanik, S.: Class. Quantum Grav. 32, 245006 (2015)

    ADS  Google Scholar 

  20. Ali, A.F., Faizal, M., Khalil, M.M.: JCAP 09, 025 (2015)

    ADS  Google Scholar 

  21. Faizal, M., Majumder, B.: Annals of Phys. 357, 49 (2015)

    ADS  Google Scholar 

  22. Zhang, X., Tian, C.: Chinese Phys. Lett. 32, 010303 (2015)

    ADS  Google Scholar 

  23. Feng, Z.W., Yang, S.Z., Li, H.L., Zu, X.T.: Adv. High Energy Phys. 2016, 2341879 (2016)

    Google Scholar 

  24. Faizal, M.: Phys. Lett. B 757, 244 (2016)

    ADS  Google Scholar 

  25. Garattini, R., Faizal, M.: Nucl. Phys. B 905, 313 (2016)

    ADS  Google Scholar 

  26. Feng, Z.W., Li, H.L., Zu, X.T., Yang, S.Z.: Eur. Phys. J. C 76, 212 (2016)

    ADS  Google Scholar 

  27. Shababi, H., Ourabah, K.: Ann. Phys. 413, 168051 (2020)

    Google Scholar 

  28. Barman, H., Rahaman, A., Jha, S.K.: Mod. Phys. Lett. A 36, 2150130 (2021)

    ADS  Google Scholar 

  29. Bessiri, A., Qurabah, K., Zerguini, T.H.: Int. J. Theor. Phys. 60, 131 (2021)

    Google Scholar 

  30. Moussa, M.: Adv. High Energy Phys. 2015, 343284 (2020)

    Google Scholar 

  31. Moradpour, H.: Aghababaei, S., Ziaie, A.H.: Symmetry, 13, 213 (2021)

  32. Wang, P., Yang, H., Zhang, X.: 2010, 43 (2010)

  33. Feleppa, F., Moradpour, H., Corda, C., Aghababaei, S.: EPL 135, 40003 (2021)

    ADS  Google Scholar 

  34. Tamburini, F., Feleppa, F., Thideé, B.: Phys. Lett. B 826, 136894 (2022)

    Google Scholar 

  35. Moradpour, H., Ziaie, A.H., Ghaffari, S., Feleppa, F.: MNRAS 488, L69 (2019)

    ADS  Google Scholar 

  36. Kibaroglu, S.: Int. J. Mod. Phys. A 34, 1950119 (2019)

    ADS  MathSciNet  Google Scholar 

  37. Chang, L.N., Minic, D., Takeuchi, T., Okamura, N.: (Phys) Rev. D 65, 125028 (2001)

    ADS  Google Scholar 

  38. Vakili, B., Gorji, M.A.: JSTAT 2012, P10013 (2012)

    Google Scholar 

  39. Mohammed, A.M., Pouria, P.: Int. J. Theor. Phys. 55, 1953 (2016)

    Google Scholar 

  40. Wang, Y.T., Li, H.L.: JSTAT 2020, 043103 (2020)

    Google Scholar 

  41. Mohammed, M.: JSTAT 2014, P11034 (2014)

    Google Scholar 

  42. Mohammed, M.: Adv. High Energy Phys. 2015,(2015)

  43. Mirtorabi, M., Miraboutalebi, S., Masoudi, A.A., Farhang Matin, L.: Physica A 506, 602 (2018)

    ADS  MathSciNet  Google Scholar 

  44. Li, H., Ren, J., Wang, W., Yang, B., Shen, H.: JSTAT 2018, 023106 (2018)

    Google Scholar 

  45. Huang, K.: Statistical Mechanics, Wiley, (1987)

  46. Greiner, W., Neise, L., Stöcker, H.: Thermodynamics and Statistical Mechanics, Springer-Verlag, (1994)

  47. Pathria, R.K., Beale, P.D.: Statistical Mechanics, third ed., Butterworth-Heinemann, (2011)

  48. Aghababaei, S., Moradpour, H., Rezaei, G., Khorshidian, S.: Phys. Scr. 96, 055303 (2021)

    ADS  Google Scholar 

  49. Bosso, P., Das, S., Pikovski, I., Vanner, M.R.: Phys. Rev. A 96, 023849 (2017)

    ADS  Google Scholar 

  50. Luciano, G.G., Petruzziello, L.: Eur. Phys. J. C 79, 283 (2019)

    ADS  Google Scholar 

  51. Gecim, G., Sucu, Y.: Phys. Lett. B 773, 391 (2017)

    ADS  Google Scholar 

  52. Bushev, P.A., Bourhill, J., Goryachev, M., Kukharchyk, N., Ivanov, E., Galliou, S., Tobar, M.E., Danilishin, S.: Phys. Rev. D 100, 066020 (2019)

    ADS  Google Scholar 

  53. Ghosh, S.: Class. Quant. Grav 31, 025025 (2014)

    ADS  Google Scholar 

  54. Feng, Z.W., Yang, Sh.Z., Li, H.L., Zu, X.T.: Phy. Lett. B 768, 81 (2017)

    ADS  Google Scholar 

  55. Scardigli, F., Casadio, R.: Eur. Phys. J. C 75, 425 (2015)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

This paper was written by mustafa şenay

Corresponding author

Correspondence to M. Senay.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senay, M. Thermo-Statistical Properties and Magnetic Susceptibility of Ideal Fermi Gases Under the Generalized Uncertainty Principle. Int J Theor Phys 62, 150 (2023). https://doi.org/10.1007/s10773-023-05418-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05418-5

Keywords

Navigation