Skip to main content
Log in

Effects of Cosmic String on Non-Relativistic Quantum Particles with Potential and Thermodynamic Properties

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this work, we investigate the quantum dynamics of non-relativistic particles interacting with a potential in the background of the topological defect produced by cosmic strings. We choose a pseudoharmonic-type potential in the quantum system and determine the exact eigenvalue solution using the parametric Nikiforov-Uvarov method. It is shown that the energy eigenvalue and wave function is influenced by the topological defect and get them shifted compared to the flat space result with this potential. This eigenvalue solution is then utilized in some diatomic molecular potential models and presented as the eigenvalue solution. Finally, we study the thermodynamic properties of the quantum system at finite temperature \(T \ne 0\) and calculate the partition function with other thermodynamic quantities, such as the vibrational free energy, mean free energy, specific heat capacity, and entropy and analyze the effects on them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availibility Statement

All data generated or analysed during this study are included in this published article.

References

  1. Eshghi, M., Mehraban, H.: Math. Meth. Aappl. Sci. 39, 1599 (2016)

    Google Scholar 

  2. Aydogdu, O., Sever, R.: Ann. Phys. (N. Y.) 325, 373 (2010)

  3. Arda, A., Sever, R.: Commun. Theor. Phys. 58, 27 (2012)

    ADS  Google Scholar 

  4. Zhang, M.C., Sun, G.H., Dong, S.H.: Phys. Lett. A 374, 704 (2010)

    ADS  MathSciNet  Google Scholar 

  5. Ortakaya, S.: Chin. Phys. B 21, 070303 (2012)

    Google Scholar 

  6. Ishkhanyan, A.: EPL 115, 20002 (2016)

    ADS  Google Scholar 

  7. Eshghi, M., Mehraban, H.: Chin. J. Phys. 50, 533 (2012)

    Google Scholar 

  8. Eshghi, M., Mehraban, H.: J. Math. Phys. 57, 082105 (2016)

    ADS  MathSciNet  Google Scholar 

  9. Eshghi, M., Mehraban, H.: C. R. Physique. 18, 47 (2017)

    ADS  Google Scholar 

  10. Schiff, L.I.: Quantum Mechanics. McGraw-Hill, New York (1955)

    MATH  Google Scholar 

  11. Landau, L.D., Lifshitz, E.M.: Quantum Mechanics. Pergamon, Non-Relativistic Theory (1977)

    MATH  Google Scholar 

  12. Greiner, W.: Quantum Mechanics: An Introduction. Springer-Verlag, Berlin, Germany (2001)

    MATH  Google Scholar 

  13. Ikhdair, S.M., Sever, R.: Jour. Mol. Struc. (Theochem) 806, 155 (2007)

    Google Scholar 

  14. Dong, S.H., Morales, D., Ravelo, J.G.: Int. J. Mod. Phys. E 16, 189 (2007)

    ADS  Google Scholar 

  15. Oyewumi, K.J., Bangudu, E.A.: Arab. J. Sci. Eng. 28, 173 (2003)

    Google Scholar 

  16. Ikhdair, S.M., Sever, R.: Cent. Eur. J. Phys. 5, 516 (2007)

    Google Scholar 

  17. Kumar, V., Singh, R.M., Bhardwaj, S.B., Rani, R., Chand, F.: Mod. Phys. Lett. A 37, 2250010 (2022)

    ADS  Google Scholar 

  18. Sever, R., Tezcan, C., Aktas, M., Yesiltas, O.: J. Math. Chem. 43, 845 (2008)

    MathSciNet  Google Scholar 

  19. Rani, R., Bhardwaj, S.B., Chand, F.: Pramana-J. Phys. 91, 46 (2018)

    ADS  Google Scholar 

  20. Cetin, A.: Phys. Lett. A 372, 3852 (2008)

    ADS  Google Scholar 

  21. Ikhdair, S.M., Hamzavi, M.: Physica B 407, 4198 (2012)

    ADS  Google Scholar 

  22. Ikhdair, S.M., Sever, R.: Cent. Eur. J. Phys. 6, 697 (2008)

    Google Scholar 

  23. Ikhdair, S., Sever, R.: J. Mol. Struct. (THEOCHEM) 855, 13 (2008)

    Google Scholar 

  24. de Montigny, M., Zare, S., Hassanabadi, H.: Gen. Relativ. Gravit. 50, 47 (2018)

    ADS  Google Scholar 

  25. de Montigny, M., Hassanabadi, H., Pinfold, J., Zare, S.: Eur. Phys. J. Plus 136, 788 (2021)

    Google Scholar 

  26. de Montigny, M., Pinfold, J., Zare, S., Hassanabadi, H.: Eur. Phys. J. Plus 137, 54 (2022)

    Google Scholar 

  27. Ahmed, F.: Proc. R. Soc. A 478, 20220091 (2022)

    ADS  Google Scholar 

  28. Ikot, A.N., Okorie, U.S., Amadi, P.O., Edet, C.O., Rampho, G.J., Sever, R.: Few-Body Syst. 62, 9 (2021)

    ADS  Google Scholar 

  29. Inyang, E.P., et al.: Can. J. Phys. 100, 463 (2022)

    Google Scholar 

  30. Hassanabadi, H., Maghsoodi, E., Zarrinkamar, S.: Eur. Phys. J. Plus 127, 31 (2012)

    Google Scholar 

  31. Oyewumi, K.J., Akoshile, C.O.: Eur. Phys. J. A 45, 311 (2010)

    ADS  Google Scholar 

  32. Oyewunmi, K.J., Falaye, B.J., Onate, C.A., Oluwadare, O.J., Yahya, W.A.: Mol. Phys. 112, 127 (2014)

    ADS  Google Scholar 

  33. Oyewunmi, K.J., et al.: Int. J. Mod. Phys. E 23, 1450005 (2014)

    ADS  Google Scholar 

  34. Medeiros, E.R.F., Bezerra de Mello, E.R.: Eur. Phys. J. C 72, 2051 (2012)

  35. Boumali, A., Aounallah, H.: Adv. High Energy Phys. 2018, 1031763 (2018)

    Google Scholar 

  36. Boumali, A., Aounallah, H.: Rev. Mex. de Fis. 66, 192 (2020)

    Google Scholar 

  37. de Oliveira, A.L.C., Bezerra de Mello, E.R.: Class. Quantum Grav. 23, 5249 (2006)

  38. Ahmed, F.: EPL 133, 50002 (2021)

    ADS  Google Scholar 

  39. Ahmed, F.: Int. J. Geom. Meth. Mod. Phys. 18, 2150187 (2021)

    Google Scholar 

  40. Furtado, C., Moraes, F.: J. Phys. A : Math. Gen. 33, 5513 (2000)

    ADS  Google Scholar 

  41. de A Marques, G., Bezerra, V.B.: Class. Quantum Grav. 19, 985 (2002)

  42. de A. Marques, G., de Assis, J.G., Bezerra, V.B.: J. Math. Phys. 48, 112501 (2007)

  43. Coelho, J.L.A., Amaral, R.L.P.G.: J. Phys. A: Math. Gen. 35, 5255 (2002)

    ADS  Google Scholar 

  44. Jusufi, K., Jakimovski, D.: Physica Macedonica 61, 85 (2012)

    Google Scholar 

  45. Edet, C.O., Ikot, A.N.: J. Low Temp. Phys. 203, 84 (2021)

    ADS  Google Scholar 

  46. Edet, C.O., Ikot, A.N.: Rev. Mex. Fis 68, 051501 (2022)

    Google Scholar 

  47. Wang, Z., Long, Z.-W., Long, C.-Y., Teng, J.: Phys. Scr. 90, 055201 (2015)

    ADS  Google Scholar 

  48. Edet, C.O., et al.: Results Phys. 39, 105749 (2022)

    Google Scholar 

  49. Edet, C.O., Lima, F.C.E., Almeida, C.A.S., Ali, N., Asjad, M.: Entropy 24(8), 1059 (2022)

    ADS  Google Scholar 

  50. Cari, C., Anggraini, D., Suparmi, A., Ma’arif, M.: AIP Conf. Proc. 2202, 020008 (2019)

    Google Scholar 

  51. Ikot, A.N., Abbey, T.M., Chukwuocha, E.O., Onyeaju, M.C.: Can. J. Phys. 94, 571 (2016)

    Google Scholar 

  52. Afshardoost, A., Hassanabadi, H.: Can. J. Phys. 94, 71 (2016)

    ADS  Google Scholar 

  53. Suparmi, A., Ma’arif, M., Dian, A., Cari, C.: J. Phys.: Conf. Ser. 1153, 012110 (2019)

    Google Scholar 

  54. Suparmi, A., Anggraini, D., Cari, C., Ma’arif, M.: J. Phys.: Conf. Ser. 1572, 012061 (2020)

    Google Scholar 

  55. Suparmi, A., Anggraini, D., Cari, C., Faniandari, S.: J. Hunan Univ. (Natural Sciences) 48, 243 (2021)

    Google Scholar 

  56. Hassanabadi, H., Afshardoost, A., Zarrinkamar, S.: Ann. Phys. (N. Y.) 356, 346 (2015)

  57. Bakke, K., Furtado, C.: Int. J. Mod. Phys. D 19, 85 (2010)

    ADS  Google Scholar 

  58. Bakke, K., Ribeiro, L.R., Furtado, C.: Cent. Eur. J. Phys. 8, 893 (2010)

    Google Scholar 

  59. Bueno, M.J., de Melo, J.L., Furtado, C., de M. Carvalho, A.M.: Eur. Phys. J. Plus 129, 201 (2014)

  60. Neto, J.A., Bueno, M.J., Furtado, C.: Ann. Phys. (N. Y.) 373, 273 (2016)

  61. Ahmed, F.: Mol. Phys. 120, e2124935 (2022)

    ADS  Google Scholar 

  62. Ahmed, F.: Mol. Phys. 121, e2155596 (2023)

    ADS  Google Scholar 

  63. Valentim, A., Bakke, K., Plascak, J.A.: Eur. J. Phys. 40, 045101 (2019)

    Google Scholar 

  64. Chargui, Y., Dhahbi, A.: Ann. Phys. (N. Y.) 423, 168328 (2016)

  65. Liu, G., Guo, K., Hassanabadi, H., Lu, L., Yazarloo, B.H.: Physica B 415, 92 (2013)

    ADS  Google Scholar 

  66. Ikot, A.N., et al.: Heliyon 6, e03738 (2020)

    Google Scholar 

  67. Jia, C.S., et al.: Chem. Phys. Lett. 717, 16 (2019)

    ADS  Google Scholar 

  68. Sobhani, H., Hassanabadi, H., Chung, W.S.: Eur. Phys. J. C 78, 106 (2018)

    ADS  Google Scholar 

  69. Ahmed, F.: J. Low Temp. Phys. 211, 11 (2023)

    ADS  Google Scholar 

  70. Ramantswana, M., et al.: Phys. Open 14, 100135 (2023)

    Google Scholar 

Download references

Funding

No funds, grants, or other support were received in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faizuddin Ahmed.

Ethics declarations

Conflicts of Interest

Author declares no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, F. Effects of Cosmic String on Non-Relativistic Quantum Particles with Potential and Thermodynamic Properties. Int J Theor Phys 62, 142 (2023). https://doi.org/10.1007/s10773-023-05397-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05397-7

Keywords

Navigation