Skip to main content
Log in

Atomic Inversion and Entanglement Dynamics for Squeezed Coherent Thermal States in the Jaynes-Cummings Model

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The tussling interplay between the thermal photons and the squeezed photons is discussed. Thermal and squeezed photons are chosen to represent the ‘classical’ and ‘quantum’ noises respectively, and, they are pitted against each other in a coherent background radiation field (represented by coherent photons). The squeezed coherent thermal states (SCTS) and their photon counting distributions (PCD) are employed for this purpose. It is observed that the addition of thermal photons and squeezed photons have counterbalancing effects, by delocalizing and localizing the PCD, respectively. Various aspects of the atom-field interaction, like the atomic inversion, and entanglement dynamics in the Jaynes-Cummings model have been investigated. Particular attention is given to the study of atomic inversion and entanglement dynamics due to the addition of thermal and squeezed photons to the coherent state. The interplay of thermal photons and squeezed photons have drastic effects on the PCD, atomic inversion, and entanglement dynamics of the atom-field interaction. The thermal photons display supremacy over the squeezed photons at the level of PCD and atomic inversion. The entanglement dynamics vary from that of a coherent state to a Glauber-Lachs state. We have also studied the mixing of thermal photons and squeezed photons using coherent squeezed thermal states, for which the behaviour of PCD, atomic inversion, and entanglement dynamics are contrasting to those of squeezed coherent thermal states. The parameter ranges for these states for which the zero Hanbury Brown and Twiss correlation is exhibited are also obtained. The associated Wigner distribution functions are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Chaturvedi, S., Srinivasan, V.: Photon-number distributions for fields with Gaussian Wigner functions. Phys. Rev. A 40, 6095–6098 (1989). https://link.aps.org/doi/10.1103/PhysRevA.40.6095

  2. Janszky, J., Yushin, Y.: Many-photon processes with the participation of squeezed light. Phys. Rev. A 36, 1288–1292 (1987). https://link.aps.org/doi/10.1103/PhysRevA.36.1288

  3. Marian, P., Marian, T.A.: Squeezed states with thermal noise. I. Photon-number statistics. Phys. Rev. A 47, 4474–4486 (1993). https://link.aps.org/doi/10.1103/PhysRevA.47.4474

  4. Marian, P., Marian, T.A.: Squeezed states with thermal noise. II. Damping and photon counting. Phys. Rev. A 47, 4487–4495 (1993). https://link.aps.org/doi/10.1103/PhysRevA.47.4487

  5. Vourdas, A.: Thermal coherent states in the Bargmann representation. Phys. Rev. A 34, 3466–3469 (1986). https://link.aps.org/doi/10.1103/PhysRevA.34.3466

  6. Yi-min, L., Hui-rong, X., Zu-geng, W., Zai-xin, X.: Squeezed coherent thermal state and its photon number distribution. Acta Physica Sinica (Overseas Edition) 6(9), 681 (1997). https://doi.org/10.1088/1004-423x/6/9/006

    Article  ADS  Google Scholar 

  7. Ezawa, H., Mann, A., Nakamura, K., Revzen, M.: Characterization of thermal coherent and thermal squeezed states. Annals of Physics 209(1), 216–230 (1991). https://www.sciencedirect.com/science/article/pii/000349169190360K

  8. Kim, M.S., de Oliveira, F.A.M., Knight, P.L.: Properties of squeezed number states and squeezed thermal states. Phys. Rev. A 40, 2494–2503 (1989). https://link.aps.org/doi/10.1103/PhysRevA.40.2494

  9. Satyanarayana, M.V., Vijayakumar, M., Alsing, P.: Glauber-Lachs version of the Jaynes-Cummings interaction of a two-level atom. Physical Review A 45(7), 5301 (1992). https://link.aps.org/doi/10.1103/PhysRevA.45.5301

  10. Subeesh, T., Sudhir, V., Ahmed, A.B.M., Satyanarayana, M.V.: Effect of Squeezing on the Atomic and the Entanglement Dynamics in the Jaynes-Cummings Model. Nonlinear Optics and Quantum Optics 44, 1–14 (2012). https://arxiv.org/abs/1203.4792

  11. Yamamoto, Y., Haus, H.A.: Preparation, measurement and information capacity of optical quantum states. Rev. Mod. Phys. 58, 1001–1020 (1986). https://link.aps.org/doi/10.1103/RevModPhys.58.1001

  12. Kitagawa, M., Ueda, M.: Squeezed spin states. Phys. Rev. A 47, 5138–5143 (1993). https://link.aps.org/doi/10.1103/PhysRevA.47.5138

  13. Ralph, T.C.: Continuous variable quantum cryptography. Phys. Rev. A 61, 010,303 (1999). https://link.aps.org/doi/10.1103/PhysRevA.61.010303

  14. Hillery, M.: Quantum cryptography with squeezed states. Phys. Rev. A 61, 022,309 (2000). https://link.aps.org/doi/10.1103/PhysRevA.61.022309

  15. Braunstein, S.L., Kimble, H.J.: Teleportation of Continuous Quantum Variables. Phys. Rev. Lett. 80, 869–872 (1998). https://link.aps.org/doi/10.1103/PhysRevLett.80.869

  16. Milburn, G.J., Braunstein, S.L.: Quantum teleportation with squeezed vacuum states. Phys. Rev. A 60, 937–942 (1999). https://link.aps.org/doi/10.1103/PhysRevA.60.937

  17. Hu, L.Y., Zhang, Z.M.: Statistical properties of coherent photon-added two-mode squeezed vacuum and its inseparability. JOSA B 30(3), 518–529 (2013). https://opg.optica.org/josab/abstract.cfm?URI=josab-30-3-518

  18. Israel, Y., Cohen, L., Song, X.B., Joo, J., Eisenberg, H.S., Silberberg, Y.: Entangled coherent states created by mixing squeezed vacuum and coherent light. Optica 6(6), 753–757 (2019). https://opg.optica.org/optica/abstract.cfm?URI=optica-6-6-753

  19. Mouloudakis, G., Lambropoulos, P.: Photonics 8(3) (2021). https://www.mdpi.com/2304-6732/8/3/72

  20. Simidzija, P., Martin-Martinez, E.: Harvesting correlations from thermal and squeezed coherent states. Physical Review D 98(8), 085007 (2018). https://link.aps.org/doi/10.1103/PhysRevD.98.085007

  21. Wang, Z., Li, H.M., Yuan, H.C., Wan, Z.L., Meng, X.G.: Squeezed coherent thermal state and its photon number distribution. International Journal of Theoretical Physics 56(3), 729–740 (2017). https://doi.org/10.1007/s10773-016-3214-5

    Article  ADS  Google Scholar 

  22. Dupays, L., Chenu, A.: Shortcuts to Squeezed Thermal States. Quantum 5, 449 (2021). https://doi.org/10.22331/q-2021-05-01-449

  23. Klaers, J.: Landauer’s Erasure Principle in a Squeezed Thermal Memory. Phys. Rev. Lett. 122, 040,602 (2019). https://link.aps.org/doi/10.1103/PhysRevLett.122.040602

  24. Glauber, R.J.: Coherent and Incoherent States of the Radiation Field. Phys. Rev. 131, 2766–2788 (1963). https://link.aps.org/doi/10.1103/PhysRev.131.2766

  25. Satyanarayana, M.V., Rice, P., Vyas, R., Carmichael, H.: Ringing revivals in the interaction of a two-level atom with squeezed light. JOSA B 6(2), 228–237 (1989). https://doi.org/10.1364/JOSAB.6.000228

    Article  ADS  Google Scholar 

  26. Jaynes, E.T., Cummings, F.W.: Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proceedings of the IEEE 51(1), 89–109 (1963). https://doi.org/10.1109/PROC.1963.1664

    Article  Google Scholar 

  27. Gerry, C.C., Knight, P.L.: Introductory Quantum Optics. Cambridge University Press (2005)

  28. Liao, Q., Yuan, L., Fu, L., Zhou, N.: Properties of entanglement between the JC model and atom-cavity-optomechanical system. International Journal of Theoretical Physics 58, 2641–2653 (2019). https://doi.org/10.1007/s10773-019-04152-1

    Article  ADS  MATH  Google Scholar 

  29. Alotaibi, M.F., Khalil, E., Abd-Rabbou, M.: Dynamics of an atomic system associated with a cavity-optomechanical system. Results in Physics 37, 105540 (2022). https://www.sciencedirect.com/science/article/pii/S221137972200273X

  30. Abd-Rabbou, M., Ali, S., Ahmed, M.: Enhancing the information of nonlinear SU (1, 1) quantum systems interacting with a two-level atom. Optical and Quantum Electronics 54(9), 548 (2022). https://doi.org/10.1007/s11082-022-03936-w

    Article  Google Scholar 

  31. Obada, A.S.F., Khalil, E., Ahmed, M., Elmalky, M.: Influence of an external classical field on the interaction between a field and an atom in presence of intrinsic damping. International Journal of Theoretical Physics 57, 2787–2801 (2018). https://doi.org/10.1007/s10773-018-3799-y

    Article  ADS  MATH  Google Scholar 

  32. Ali, S.: Some Statistical Properties for Interacting Between a Two Two-Level Atoms and the Electromagnetic Fields in Present of Converter Terms. International Journal of Theoretical Physics 55(1), 161–175 (2016). https://doi.org/10.1007/s10773-015-2646-7

    Article  ADS  MATH  Google Scholar 

  33. Wei, T.C., Nemoto, K., Goldbart, P.M., Kwiat, P.G., Munro, W.J., Verstraete, F.: Maximal entanglement versus entropy for mixed quantum states. Physical Review A 67(2), 022110 (2003). https://link.aps.org/doi/10.1103/PhysRevA.67.022110

  34. Hillery, M., O’Connell, R., Scully, M., Wigner, E.: Distribution functions in physics: Fundamentals. Physics Reports 106(3), 121–167 (1984). https://www.sciencedirect.com/science/article/pii/0370157384901601

  35. Lee, H.W.: Theory and application of the quantum phase-space distribution functions. Physics Reports 259(3), 147–211 (1995). https://www.sciencedirect.com/science/article/pii/0370157395000074

  36. Schleich, W.P.: Quantum Optics in Phase Space. Wiley-VCH (2001)

  37. Agarwal, G.S.: Quantum Optics. Cambridge University Press (2013)

Download references

Acknowledgements

The authors thank Professors Surendra Singh, S. Sivakumar, Arul Lakshminarayan and A. B. M. Ahmed for valuable discussions and suggestions.

Author information

Authors and Affiliations

Authors

Contributions

K.M. and M.V.S conceptualized the problem and wrote the manuscript. K.M. prepared the figures. All authors reviewed and approved the manuscript.

Corresponding author

Correspondence to Koushik Mandal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, K., Satyanarayana, M.V. Atomic Inversion and Entanglement Dynamics for Squeezed Coherent Thermal States in the Jaynes-Cummings Model. Int J Theor Phys 62, 140 (2023). https://doi.org/10.1007/s10773-023-05389-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05389-7

Keywords

Navigation