Skip to main content
Log in

Short-distance quantum state preparation of an arbitrary two-qubit state via GHZ state

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Fusing the idea of short-distance teleportation and remote quantum state preparation (QSP), we first propose a novel deterministic QSP scheme to prepare an arbitrary two-particle state between two participants in a short distance by using a maximally entangled GHZ state as a quantum channel working together with auxiliary in the ground state \(|0\rangle \), wherein this GHZ state is pre-constructed by us via Hadamard gate, controlled-NOT gate and Pauli-X gate. Then, by replacing the maximally entangled GHZ state with a partially entangled GHZ state with real coefficients, we give two probabilistic short-distance QSP schemes to meet the communication demand in the real environment. One of these two schemes is based on projective measurement, and the other is based on positive operator-value measurement (POVM), both of which are extensions of the above ideal scheme. Finally, using our 4-order diagonal phase transformation, the above schemes can be extended to the case of complex coefficient GHZ channels. Our schemes require less entanglement resource, but at the cost of teleportation distance, and so they are the optimal choice for short-distance QSP. From the practical point of view, our schemes are very promising for application of QSP on chip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridage University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Liu, X.S., Long, G.L., Tong, D.M., Li, F.: General scheme for superdense coding between multiparties. Phys. Rev. A 65, 022304 (2002)

    ADS  Google Scholar 

  3. Liu, B. H., Hu, X. M., Huang, Y. F., et al.: Experimental demonstration of efficient supdense coging in the presence of non-Markovian noise. Europhys, Lett. 114, 2881(2016)

  4. Gisin, N., Ribordy, G., Tittel, W., et al.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

    ADS  MATH  Google Scholar 

  5. Xu, F.X., Chen, W., Wand, S., et al.: Field experiment on a robust hierarchical metroplitan quantum cryptography network. Chin. Sci. Bull. 54, 2991–2997 (2009)

    Google Scholar 

  6. Huang, W.: Improved multiparty quantum key agreement in travelling mode. Sci. Chin. Phys. Mech. Astron. 59(2), 120311(2016)

  7. Bennett, C.H., Brassard, G., Crépeau, C., et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  8. Peng, J.Y., He, Y.: Annular controlled teleportation. Int. J. Theor. Phys. 58, 3271 (2019)

    MathSciNet  MATH  Google Scholar 

  9. Bouwmeester, D., Pan, J.W., Mattle, K., et al.: Experimental quantum teleportation. Nathre 390, 575 (1997)

    Google Scholar 

  10. Deng, F.G., Li, X.H., Li, C.Y., et al.: Multiparty quantum secret report. Chin. Phys. Lett. 23, 1676–1679 (2006)

    ADS  Google Scholar 

  11. Peng, J.Y., Yang, Z., Tangz, L., Peng, J.S.: Controlled quantum broadcast and multi-cast communications of complex coefficient single-qubit states. Quantum Info. Proce. 21, 287 (2022)

    ADS  MathSciNet  MATH  Google Scholar 

  12. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    ADS  Google Scholar 

  13. Wang, C., Deng, F.G., Li, Y.S., et al.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)

    ADS  Google Scholar 

  14. Peng, J.Y., Bai, M.Q., Mo, Z.W.: Bidirectional quantum states sharing. Int. J. Theor. Phys. 55, 2481–2489 (2016)

    MathSciNet  MATH  Google Scholar 

  15. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  16. Peng, J.Y., Bai, M.Q., Mo, Z.W.: Hierarchical and probabilistic quantum state sharing via a non-maximally entangled |X> state. Chin. Phys. B 23, 010304 (2014)

  17. Abulkasim, H., Hamad, S., Bahnasy, E. K., et al.: Authenticated quantum secret sharing with quantum dialogue based on Bell states. Physica Scripta 91(8), 085101(2016)

  18. Peng, J.Y., Luo, M.X., Mo, Z.W.: Remote infromation concentration via four-particle cluster state and by positive operator-value measurement. Int. J. Mod. Phys. B 27, 1350091 (2013)

    ADS  MATH  Google Scholar 

  19. Peng, J.Y., Bai, M.Q., Mo, Z.W.: Remote information concentration via W state: rever of ancilla-free phase-covariant teecloning. Quantum Info. Proce. 13, 3511–3525 (2013)

    ADS  MATH  Google Scholar 

  20. Huelga, S. F., Vaccaro, J. A., Clefles, A., et al.: Quantum remote control: teleportation of unitary operations. Phys. Rev. A 63(4), 042303(2001)

  21. Peng, J.Y., He, Y.: Cyclic controlled remote implementation of partially unknown quantum operations. Int. J. Theor. Phys. 58, 3065–3072 (2019)

    MathSciNet  MATH  Google Scholar 

  22. Wang, A.M.: Remote implementations of partially unknown quantum operations of multiqubits. Phys. Rev. A 74(3), 396–401 (2006)

    MathSciNet  Google Scholar 

  23. Peng, J.Y., Yang, Z., Tang, L., Peng, J.S.: Double-direction cyclic controlled remote implementation of partially known quantum operations. Int. J. Theor. Phys. 61, 256 (2022)

    MathSciNet  MATH  Google Scholar 

  24. Peng, J.Y., Tang, L., Yang, Z., Lei, H.X., Bai, M.Q.: Many-party comntrolled remote implementations of multiple partially unknown quantum operations. Quantum Info. Proce. 22, 2 (2023)

    ADS  Google Scholar 

  25. Peng, J.Y., Bai, M.Q., Mo, Z.W.: Multicharactoers remote rotation sharing with five-particle cluster state. Quantum Infor. Proce. 18, 339 (2019)

    ADS  MATH  Google Scholar 

  26. Pati, A.K.: Minimum classical bit of for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2000)

    ADS  Google Scholar 

  27. Peng, J.Y.: Remote preparation of general one-, two- and three-qubit states via \(\chi \)-type entangled tates. Int. J. Theor. Phys. 59, 3789–3803 (2020)

    MATH  Google Scholar 

  28. Bennett, C. H., Divincenzo, D. P., Shor. P. W., et al.: Remote State Preparation. Phys. Rev. Lett. 87, 077902(2001)

  29. Peng, J. Y., Luo, M. X., Mo, Z. W., et al.: Flexible deterministic joint remote state preparation of some states. Int. J. Quantum Inf. 11(4), 1350044(2013)

  30. Chen, N., Yan, B., Chen, G., Zhang, M. J., Pei, C. X.: Determinstic herarchical joint remote state preparation with six-particle partially entangled state. Chin. Phys. B 27(9) , 090304(2018)

  31. Peng, J. Y., Bai, M. Q., Mo, Z. W.: Joint remote state preparation of a four-dimensional quantum state. Chin. Phys. Lett. 31(1), 010301(2014)

  32. Nguyen, B.A.: Joint remote state prepartation via W and W-type states. Opt. Commun. 283, 4113–4120 (2010)

    Google Scholar 

  33. Peng, J.Y., Luo, M.X., Mo, Z.W.: Joint remote state preparation of arbitrary two-particle states via GHZ-type states. Quantum Info. Proce. 12, 2325–2342 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  34. Zhang, Z.H., Sun, M.: Enhanced deterministic joint remote state preparation under Pauli channels with memory. Physica Scripta 95, 055107 (2020)

    ADS  Google Scholar 

  35. Zhou, K.H., Shi, L., Luo, B.B., Xue, Y., Huang, C., Ma, Z.Q., Wei, J.H.: Deterministic controlled remote state preparation of real-parameter multi-qubit states via maximal slice states. Int. J. Theor. Phys. 58, 4079–4092 (2019)

    MATH  Google Scholar 

  36. Nguyen, B.A.: Quantum dialogue. Phys. Lett. A 328, 6–10 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  37. Leung, D.W., Shor, P.W.: Obliviosr remote stste preparation. Phys. Rev. Lett. 90, 127905 (2003)

    ADS  Google Scholar 

  38. Paris, N.G.A., Cola, M., Bonifacio, R.: Remote state preparation and teleportation in phase space. J. Opt. B-Quant. Semiclass. Opt. 5, S360–S364 (2003)

    ADS  Google Scholar 

  39. Wang, Z.Y., Liu, Y.M., Zuo, X.Q., Zhang, Z.J.: Controlled remote state preparation. Commun. Theor. Phys. 52, 235–240 (2009)

    ADS  MATH  Google Scholar 

  40. Peng, J.Y., Bai, M.Q., Tang, L., Yang, Z.: Perfect controlled joint remote state preparation of arbitrary multi-qubit states independent of entanglement degree of the quantum channel. Quantum Info. Proce. 20, 340 (2021)

    ADS  MathSciNet  MATH  Google Scholar 

  41. Peng, J.Y., Bai, M.Q., Mo, Z.W.: Bidirectional controlled joint remote state prepartion. Quantum Infor. Proce. 14, 4263–4278 (2015)

    ADS  MATH  Google Scholar 

  42. Sun, Y.R., Chen, X.B., Xu, G., Yuan, K.G., Yang, Y.X.: Asymmetric controlled bidirectional remote preparation of two- and three-qubit equatorial state. Sci. Rep. 9, 2081 (2019)

    ADS  Google Scholar 

  43. Peng, J.Y., Xiang, Y.: Bidirectional remote state preparation in noisy environment assisted by weak measurement. Optic Communications 499, 127285 (2021)

    Google Scholar 

  44. Sang, Z.W.: Asymmetric bidirectional controlled remote state preparation by using a seven-particle entangled state. Int. J. Theor. Phys. 56, 3209–3212 (2017)

    MathSciNet  MATH  Google Scholar 

  45. Wang, M.M., Yang, C., Mousoli, R.: Controlled cyclic remote state preparation of arbitrary qubit states. CMC-Comput. Mater. Contin. 55, 321–329 (2018)

    Google Scholar 

  46. Peng, J.Y., Lei, H.X.: Cyclic remote state preparation. Int. J. Theor. Phys. 60(4), 1593–1602 (2021)

    MathSciNet  MATH  Google Scholar 

  47. Sang, Z.W.: Cyclic controlled joint remote state preparation by using a ten-qubit entangled state. Int. J. Theor. Phys. 58, 255–260 (2019)

    MATH  Google Scholar 

  48. Sun, S.Y., Zhang, H.S.: Quantum double-directional cyclic controlled communication via a thirteen-qubit entangled state. Quantum Info. Proce. 19, 120 (2020)

    ADS  MATH  Google Scholar 

  49. Sun, S.Y., Zhang, H.S.: Double-directional quantum cyclic controlled remote state preparation of two-qubit states. Quantum Inf. Proce. 20, 211 (2021)

    ADS  MATH  Google Scholar 

  50. Peng, X.H., Zhu, X.W., Fang, X.M., et al.: Experimental implementation of remote state preparation by nuclear magnetic resonance. Phys. Lett. A 306(5–6), 271–276 (2003)

    ADS  Google Scholar 

  51. Peters, N.A., Meyers, R.E., Shih, Y., et al.: Remote state preparation: arbitrary remote control of photon polarizations for quantum communication. International Society for Optics and Photonics 5893, 589308 (2005)

    Google Scholar 

  52. Rosenfeld, W., Berner, S., Volz, J., et al.: Remote preparation of an atomic quantum memory. Phys. Rev. Lett. 98(5), 050504(2007)

  53. Peters, N. A., Barreiro, J. T., Goggin, M. E., et al.: Arbitrary remote state preparation of photon polarization. Quantum Electronics and Laser Science Conference (2005)

  54. Cong, S., Kuang, S.: Control theory and methods of quantum systems. Press of University of Science and Technology of China, Hefei (2020)

    Google Scholar 

  55. Ma, P.C., Zhan, Y.B.: Scheme for probabilistic remotely preparing a multi-particle entangled GHZ state. Chin. Phys. B 17(2), 445–450 (2008)

    ADS  Google Scholar 

  56. Wei, Z.H., Zha, X.W., Yu, Y.: Efficient schemes of remote state preparation for four-qubit entangled cluster-type state via two non-maximally entangled GHZ-type states. Int. J. Theor. Phys. 56(4), 1–8 (2017)

    MATH  Google Scholar 

  57. Chen, W. L., Ma, S. Y., Qu, Z. G.: Controlled remote preparation of an arbitrary four-qubit cluster-type state. Chin. Phys. B 25(10), 100304(2016)

  58. Liu, J., Feng, X., Oh, C. H.: Remote preparation of a three-particle state via positive operator-valued measurement. J. Phys. B-At. Mol. Opt. 42(5),055508(2009)

  59. Wang, Z.Y.: Symmetric remote single-qubit state preparation via positive perator-valued measurement. Int. J. Theor. Phys. 49(6), 1357–1369 (2010)

    MATH  Google Scholar 

  60. Song, J. F., Wang, Z. Y.: Controlled remote preparation of a two-qubit state via positive operator-valued measure and two three-qubit entanglements. Int. J. Theor. Phys. 50(8), 2410-2425(2011,)

  61. Zhou, P.: Joint remote preparation of an arbitrary m-qubit state with a pure entangled quantum channel via positive operator-value measurement. J. Phys A-Math. Theor. 45, 215306 (2012)

    ADS  Google Scholar 

  62. Gong, R. Z., Wei, Y. Z., Xue, S. B., Jiang, Min.: Joint remote state preparation of an abitrary multi-qubit state in a chain nrtwork. Quantum Info. Proce. 21, 341(2022)

  63. Tan, X.D., Han, J.Q.: Short-distance teleportation of an arbitrary two-qubit state via a Bell state. Int. J. Theor. Phys. 50(60), 1275–1282 (2021)

    MathSciNet  MATH  Google Scholar 

  64. Xiong, S. Y., Tang, L., Zhang, Q., et al.: The rotation scheme of quantum tates based on EPR pairs. Mod. Phys. Lett. B 36(5), 2150579(2022)

  65. Schoelkopf, R.J., Girvin, S.M.: Wiring up quantum systems. Nature 451, 664–669 (2008)

    ADS  Google Scholar 

  66. Steffen, L., et al.: Deterministic quantum teleportation with feed-forward in a solid state system. Nature 500, 319–322 (2013)

    ADS  Google Scholar 

  67. Metcalf, B.J., et al.: Quantum teleportation on a photonic chip. Nature Photon. 8, 770–774 (2014)

    ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by Natural Science Foundation of China (No. 11071178, 11671284), Sichuan Province Education Department Scientific Research Innovation Team Foundation (NO. 15TD0027), and Taizhou University high level talents research initiation fund (No. TZXY2017QDJJ011).

Funding

This work is supported by Natural Science Foundation of China (No. 11071178, 11671284), Sichuan Province Education Department Scientific Research Innovation Team Foundation (NO. 15TD0027), and Taizhou University high level talents research initiation fund (No. TZXY2017QDJJ011).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hong-xuan Lei.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Jy., Lei, Hx. & Liu, M. Short-distance quantum state preparation of an arbitrary two-qubit state via GHZ state. Int J Theor Phys 62, 139 (2023). https://doi.org/10.1007/s10773-023-05380-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05380-2

Keywords

Navigation