Skip to main content
Log in

Geometric Discord of GHZ State under Decoherence

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Geometric discord is an essential method to measure quantum correlations. It is significative to investigate how geometric discord of GHZ state is affected under decoherence channels (phase flip, bit flip and bit-phase flip channels). It indicates that geometric discord of GHZ state decreases with time and eventually approaches to a stable value under decoherence channels. Especially under bit flip and bit-phase flip channels, their change trends of geometric discord are exactly the same. By comparing the variation trend of geometric discord of GHZ state under three decoherence channels, it can be concluded that quantum correlations are most affected under phase flip channel, that is, the decoherence ability of GHZ state to resist phase flip noise environment is weaker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crepeau, C., et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    ADS  MATH  MathSciNet  Google Scholar 

  2. Bennett, C.H., DiVincenzo, D.P., Shor, P.W., et al.: Erratum: remote state preparation. Phys. Rev. Lett. 87, 77902 (2001)

    ADS  Google Scholar 

  3. Scarani, V., Iblisdir, S., Gisin, N., et al.: Quantum cloning. Rev. Mod. Phys. 77, 1225 (2005)

    ADS  MATH  MathSciNet  Google Scholar 

  4. Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661 (1991)

    ADS  MATH  MathSciNet  Google Scholar 

  5. Datta, A., Vidal, G.: Role of entanglement and correlations in mixed-state quantum computation. Phys. Rev. A. 75, 042310 (2007)

    ADS  MathSciNet  Google Scholar 

  6. Lanyon, B.P., Barbieri, M., Almeida, M.P., et al.: Experimental quantum computing without entaglement. Phys. Rev. Lett. 101, 200501 (2008)

    ADS  Google Scholar 

  7. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    ADS  MATH  Google Scholar 

  8. Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)

    ADS  Google Scholar 

  9. Rulli, C.C., Sarandy, M.S.: Global quantum discord in multipartite systems. Phys. Rev. A. 84, 042109 (2011)

    ADS  Google Scholar 

  10. Lang, M.D., Caves, C.M.: Quantum discord and the geometry of bell-diagonal states. Phys. Rev. Lett. 105, 150501 (2010)

    ADS  Google Scholar 

  11. Ali, M., Rau, A.R.P., Alber, G.: Quantum discord for two-qubit \(X\) states. Phys. Rev. A. 81, 042105 (2010)

    ADS  Google Scholar 

  12. Giorda, P., Paris, M.G.A.: Gaussian quantum discord. Phys. Rev. Lett. 105, 020503 (2010)

    ADS  Google Scholar 

  13. Pinto, J.P.G., Karpat, G., Fanchini, F.F.: Sudden change of quantum discord for a system of two qubits. Phys. Rev. A. 88, 034304 (2013)

    ADS  Google Scholar 

  14. Girolami, D., Adesso, G.: Quantum discord for general two-qubit states: analytical progress. Phys. Rev. A 83, 052108 (2011)

    ADS  Google Scholar 

  15. Luo, S.L.: Quantum discord for two-qubit systems. Phys. Rev. A. 77, 042303 (2008)

    ADS  Google Scholar 

  16. Mirmasoudi, F., Ahadpour, S.: Dynamics of super quantum discord and optimal dense coding in quantum channels. J. Phys. A: Math. Theor. 51, 345302 (2018)

    MATH  MathSciNet  Google Scholar 

  17. Nguyen, N.T.T., Joynt, R.: Topology of quantum discord. J. Phys. A: Math. Theor. 50, 155301 (2017)

    ADS  MATH  MathSciNet  Google Scholar 

  18. Zhou, J.M., Hu, X.L., Jing, N.H.: Quantum discords of tripartite quantum systems. Quantum Inf. Process. 21, 147 (2022)

    ADS  MATH  MathSciNet  Google Scholar 

  19. Dakic, B., Vedral, V., Brukner, C.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    ADS  MATH  Google Scholar 

  20. Paula, F.M., Oliveira, T.R., Sarandy, M.S.: Geometric quantum discord through the Schatten one-norm. Phys. Rev. A. 87, 064101 (2013)

    ADS  Google Scholar 

  21. Bellomo, B., Franco, R., Compagno, G.: Dynamics of geometric and entropic quantifiers of correlations in open quantum systems. Phys. Rev. A. 86, 012312 (2012)

    ADS  Google Scholar 

  22. Huang, Z.M., Qiu, D.W.: Geometric quantum discord under noisy environment. Quantum Inf. Process. 15, 1979–1998 (2016)

    ADS  MATH  MathSciNet  Google Scholar 

  23. Guo, Y.N., Liu, Z.K., Tian, Q.L., et al.: Geometric quantum discord of a two-qutrit system under decoherence at finite temperature. Int. J. Theor. Phys. 57, 1471–1478 (2018)

    MATH  MathSciNet  Google Scholar 

  24. Yao, Y., Li, H.W., Yin, Z.Q., et al.: Geometric interpretation of the geometric discord. Phys. Lett. A. 376, 358 (2012)

    ADS  MATH  Google Scholar 

  25. Liu, T.K., Liu, F., Shan, C.J., Liu, J.B.: Geometrical quantum discord and negativity of two separable and mixed qubits. Chin. Phys. B. 28, 106–113 (2019)

    Google Scholar 

  26. Lu, D.M.: Geometrical quantum discord dynamics in a two-dimensional coupled cavities system. Int. J. Theor. Phys. 56, 624–633 (2017)

    ADS  MATH  Google Scholar 

  27. Li, L., Wang, Q.W., Shen, S.Q., Li, M.: Geometric measure of quantum discord with weak measurements. Quantum Inf. Process. 15, 291–300 (2016)

    ADS  MATH  MathSciNet  Google Scholar 

  28. Xu, J.W.: Geometric global quantum discord. J. Phys. A: Math. Theor. 45, 1–9 (2012)

    MATH  MathSciNet  Google Scholar 

  29. Xiao, Y.L., Li, T., Fei, S.M., et al.: Geometric global quantum discord of two-qubit states. Chin. Phys. B. 25, 64–68 (2016)

    Google Scholar 

  30. Luo, S.L., Fu, S.S.: Geometric measure of quantum discord. Phys. Rev. A 82, 034302 (2010)

    ADS  MATH  MathSciNet  Google Scholar 

  31. Hassan, A.S.M., Lari, B., Joag, P.S.: Tight lower bound to the geometric measure of quantum discord. Phys. Rev. A. 85, 024302 (2012)

    ADS  Google Scholar 

  32. Rana, S., Parashar, P.: Tight lower bound on geometric discord of bipartite states. Phys. Rev. A. 85, 024102 (2012)

    ADS  Google Scholar 

  33. Lu, X.M., Xi, Z.J., Sun, Z., et al.: Geometric measure of quantum discord under decoherence. Quantum Inf. Comput. 10, 0994 (2010)

    MATH  MathSciNet  Google Scholar 

  34. Liu, C., Dong, Y.L., Zhu, S.Q.: Geometric discord for non-\(X\) states. Chin. Phys. B. 23, 60–64 (2014)

    Google Scholar 

  35. Huang, Z.H., Qiu, D.W., Mateus, P.: Geometry and dynamics of one-norm geometric quantum discord. Quantum Inf. Process. 15, 301 (2016)

    ADS  MATH  MathSciNet  Google Scholar 

  36. Zhou, J., Guo, H.: Dynamics of tripartite geometric quantifiers of correlations in a quantum spin system. Phys. Rev. A. 87, 062315 (2013)

    ADS  Google Scholar 

  37. Giorgi, G.L., Bellomo, B., Galve, F., et al.: Erratum: genuine quantum and classical correlations in multipartite systems. Phys. Rev. Lett. 107, 190501 (2011)

    ADS  Google Scholar 

  38. Radhakrishnan, C., Lauriere, M., Byrnes, T.: Multipartite generalization of quantum discord. Phys. Rev. Lett. 124, 110401 (2020)

    ADS  MathSciNet  Google Scholar 

  39. Zhu, C.L., Hu, B., Li, B., et al.: Geometric discord for multiqubit systems. Quantum Inf. Process. 21, 264 (2022)

    ADS  MATH  MathSciNet  Google Scholar 

  40. Wang, B., Liu, S.Q., Gong, L.H.: Semi-quantum private comparison protocol of size relation with d-dimensional GHZ states. Chin. Phys. B. 31, 149–155 (2022)

    Google Scholar 

  41. Yin, A., Chen, T.: Authenticated semi-quantum secret sharing based on GHZ-type states. Int. J. Theor. Phys. 60, 265–273 (2021)

    MATH  MathSciNet  Google Scholar 

  42. Liu, Y.M., Wang, Z.Y., Liu, J., et al.: Remote preparation of three-particle GHZ class states. Commun. Theor. Phys. 49, 359–364 (2008)

    ADS  MATH  MathSciNet  Google Scholar 

  43. Hu, M.L., Sun, J.: Sudden change of geometric quantum discord in finite temperature reservoirs. Ann. Phys. 354, 265–273 (2015)

    ADS  MATH  MathSciNet  Google Scholar 

  44. Jia, L.X., Li, B., Yue, R.H., et al.: Sudden change of quantum discord under single qubit noise. Int. J. Quant. Inf. 11, 1350048 (2013)

    MATH  MathSciNet  Google Scholar 

  45. Yan, X.Q., Liu, G.H., Chee, J.: Sudden change in quantum discord accompanying the transition from bound to free entanglement. Phys. Rev. A. 87, 022340 (2013)

    ADS  Google Scholar 

  46. Hu, M.L., Fan, H.: Evolution equation for geometric quantum correlation measures. Phys. Rev. A. 91, 052311 (2015)

    ADS  Google Scholar 

  47. Hu, M.L., Fan, H.: Robustness of quantum correlations against decoherence. Ann. Phys. 327, 851–860 (2012)

    ADS  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of Sichuan Province (No. 2022NSFSC0534), Major Science and Technology Application Demonstration Project in Chengdu (No.2021-YF09-0116-GX), Key project of Sichuan Normal University (No. XKZX-02)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Qiang Bai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dan Xue and Yu-Die Yang contributed equally to this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, ST., Bai, MQ., Xue, D. et al. Geometric Discord of GHZ State under Decoherence. Int J Theor Phys 62, 122 (2023). https://doi.org/10.1007/s10773-023-05373-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05373-1

Keywords

Navigation