Skip to main content
Log in

Quantum Walk Search on a Two-dimensional Grid with Extra Edges

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum walk has been successfully used to search for targets on graphs with vertices identified as the elements of a database. This spacial search on a two-dimensional periodic grid takes \(\mathcal {O}\left( \sqrt{N\log N}\right) \) oracle consultations to find a target vertex from N number of vertices with \(\mathcal {O}(1)\) success probability, while reaching optimal speed of \(\mathcal {O}(\sqrt{N})\) on \(d \ge 3\) dimensional square lattice. Our numerical analysis based on lackadaisical quantum walks searches M vertices on a 2-dimensional grid with optimal speed of \(\mathcal {O}(\sqrt{N/M})\), provided the grid is attached with additional long range edges. Based on the numerical analysis performed with multiple sets of randomly generated targets for a wide range of N and M we suggest that the optimal time complexity of \(\mathcal {O}(\sqrt{N/M})\) with constant success probability can be achieved for quantum search on a two-dimensional periodic grid with long-range edges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Preskill, J.: Quantum 2, 79 (2018)

    Article  Google Scholar 

  2. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2000)

  3. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. Proc: 35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, 20-22, Nov. (1994)

  4. Shor, P.W.: SIAM: J. Sci. Stat. Comput. 26, 1484 (1997)

  5. Grover, L.K.: A fast quantum mechanical algorithm for database search, vol. 212. In: Proceeding of 28th Annual ACM Symposium on Theory of Computing (STOC). (1996)

  6. Grover, L.K.: Phys. Rev. Lett. 79, 325 (1997)

    Article  ADS  Google Scholar 

  7. Grover, L.K., Radhakrishnan, J., Symp, A.C.M.: Parallel Algorithms and Architectures, Las Vegas, vol. 186. Nevada, USA (2005)

    Google Scholar 

  8. Choi, B.S., Korepin, V.E.: Quantum Inf. Process. 6, 37 (2007)

    Article  MathSciNet  Google Scholar 

  9. Zhang, K., Korepin, V.E.: Quantum Inf. Process. 17, 143 (2018)

    Article  ADS  Google Scholar 

  10. Giri, P.R., Korepin, V.E.: Quant. Inf. Process. 16, 1–36 (2017)

    Article  Google Scholar 

  11. Childs, A.M., Goldstone, J.: Phys. Rev. A 70, 022314 (2004)

    Article  ADS  Google Scholar 

  12. Aaronson, S., Ambainis, A.: Theor. Comput. 1(4), 47–79 (2005)

    Article  Google Scholar 

  13. Ambainis, A., Kempe, J., Rivosh, A.: Proceedings 16th Annual ACM-SIAM Symposium Discrete Algorithms, SODA 05. SIAM, Philadelphia, PA, pp. 1099–1108 (2005)

  14. Meyer, D.A., Wong, T.G.: Phys. Rev. Lett. 114, 110503 (2015)

    Article  ADS  Google Scholar 

  15. Chakraborty, S., Novo, L., Ambainis, A., Omar, Y.: Phys. Rev. Lett. 116, 100501 (2016)

  16. Benioff, P.: Contemporary Mathematics 305 112. American Mathematical Society, Providence, RI (2002)

  17. Brassard, G., Høyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification and estimation. Quantum Computation and Quantum Information 305, 53–74 (2000)

  18. Portugal, R.: Quantum walks and search algorithms. Springer, New York (2013)

    Book  MATH  Google Scholar 

  19. Childs, A.M., Goldstone, J.: Phys. Rev. A 70, 042312 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  20. Tulsi, A.: Phys. Rev. A 78, 012310 (2008)

    Article  ADS  Google Scholar 

  21. Ambainis, A., Bačkurs, A., Nahimovs, N., Ozols, R., Rivosh, A.: Proceedings 7th Annual Conference Theory of Quantum Computation, Communication, and Cryptography, TQC 2012, 87-97. Springer, Tokyo (2013)

  22. Wong, T.G.: J. Phys. A Math. Theor. 48(43), 435304 (2015)

    Article  Google Scholar 

  23. Wong, T.G.: J. Phys. A Math. Theor. 50(47), 475301 (2017)

  24. Wong, T.G.: Quant. Inf. Process. 17, 68 (2018)

    Article  ADS  Google Scholar 

  25. Nahimovs, N., Rivosh, A.: Proceedings of SOFSEM 9587, 381–391 (2016)

    Google Scholar 

  26. Saha, A., Majumdar, R., Saha, D., Chakrabarti, A., Sur-Kolay, S.: Quant. Inf. Process 21, 275 (2022). Preprint at http://arxiv.org/abs/1804.01446 [quant-ph]

  27. Nahimovs, N.: SOFSEM 2019: Theory and practice of computer science. SOFSEM 2019. Lecture Notes in Computer Science, vol. 11376. Springer, Cham (2019)

  28. Giri, P.R., Korepin, V.E.: Mod. Phys. Lett. A 33(1), 2050043 (2020)

  29. Boettcher, S., Goncalves, B.: Europhys. Lett. 84, 30002 (2008)

    Article  ADS  Google Scholar 

  30. Marquezino, F.L., Portugal, R., Boettcher, S.: Phys. Rev. A 87, 012329 (2013)

    Article  ADS  Google Scholar 

  31. Giri, P.R., Korepin, V.E.: Int. J. Quant. Inf. 17(07), 1950060 (2019)

  32. Zalka, C.: Phys. Rev. A 60, 2746 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pulak Ranjan Giri.

Ethics declarations

Conflict of Interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giri, P.R. Quantum Walk Search on a Two-dimensional Grid with Extra Edges. Int J Theor Phys 62, 121 (2023). https://doi.org/10.1007/s10773-023-05369-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05369-x

Keywords

Navigation