Skip to main content
Log in

Reheating Mechanism from Tree Level Potential in Standard Cosmology

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We investigate the tree-level inflation potential within the framework of standard cosmology. Focusing on three branches of the potential, we analyze how the different inflationary perturbation parameters show compatibility with recent Planck observations. We examine the reheating parameters within the framework of the standard cosmology and provide constraints to reheating temperature \(T_{re}\) and duration \(N_{re}\) according to recent data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liddle, A.R., Lyth, D.H.: Cosmological inflation and large-scale structure. Cambridge University Press (2000)

    Book  MATH  Google Scholar 

  2. Antusch, S., Nolde, D.: BICEP2 implications for single-field slow-roll inflation revisited. Journal of Cosmology and Astroparticle Physics 2014(05), 035 (2014)

    Article  MathSciNet  Google Scholar 

  3. Kobayashi, T., Seto, O.: Polynomial inflation models after BICEP2. Physical Review D 89(10), 103524 (2014)

    Article  ADS  Google Scholar 

  4. El Bourakadi, K., et al.: Primordial black holes and gravitational waves in teleparallel Gravity. The European Physical Journal C 82(9), 1–11 (2022)

    Article  Google Scholar 

  5. Koussour, M., El Bourakadi, K., Shekh, S.H., Pacif, S.K.J., Bennai, M.: Late-time acceleration in \({f (Q)}\) gravity: Analysis and constraints in an anisotropic background. Annals of Physics 445, 169092 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bousder, M., El Bourakadi, K., Bennai, M.: Charged 4D Einstein-Gauss-Bonnet black hole: Vacuum solutions, Cauchy horizon, thermodynamics. Physics of the Dark Universe 32, 100839 (2021)

    Article  Google Scholar 

  7. Bourakadi, K. E., Koussour, M., Otalora, G., Bennai, M., & Ouali, T. (2023). Constant-roll and primordial black holes in f (Q, T) gravity. arXiv preprint http://arxiv.org/abs/2301.03696arXiv:2301.03696

  8. Rehman, M.U., Shafi, Q., Wickman, J.R.: GUT inflation and proton decay after WMAP5 data. Physical Review D 78(12), 123516 (2008)

    Article  ADS  Google Scholar 

  9. Rehman, M.U., Shafi, Q.: Higgs inflation, quantum smearing, and the tensor to scalar ratio. Physical Review D 81(12), 123525 (2010)

    Article  ADS  Google Scholar 

  10. Okada, N., Şenoğuz, V. N., & Shafi, Q. (2016). The observational status of simple inflationary models: an update. Turkish Journal of Physics, 40(2), 150-162

  11. Guth, A.H., Weinberg, E.J.: Cosmological consequences of a first-order phase transition in the \(SU(5)\) grand unified model. Physical Review D 23(4), 876 (1981)

    Article  ADS  Google Scholar 

  12. Aghanim, N., Akrami, Y., Ashdown, M., Aumont, J., Baccigalupi, C., Ballardini, M., ... & Spencer, L. D. (2020). Planck 2018 results-V. CMB power spectra and likelihoods. Astronomy & Astrophysics, 641, A5

  13. Brax, P., van de Bruck, C., Davis, A.C.: Brane world cosmology. Reports on Progress in Physics 67(12), 2183 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  14. Langlois, D.: Brane cosmology. Progress of Theoretical Physics Supplement 148, 181–212 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Shtanov, Y., Traschen, J., Brandenberger, R.: Universe reheating after inflation. Physical Review D 51(10), 5438 (1995)

    Article  ADS  Google Scholar 

  16. Bassett, B.A., Tsujikawa, S., Wands, D.: Inflation dynamics and reheating. Reviews of Modern Physics 78(2), 537 (2006)

    Article  ADS  Google Scholar 

  17. Mardon, J., Nomura, Y., Thaler, J.: Cosmic signals from the hidden sector. Physical Review D 80(3), 035013 (2009)

    Article  ADS  Google Scholar 

  18. Khlopov, M.Y., Barrau, A., Grain, J.: Gravitino production by primordial black hole evaporation and constraints on the inhomogeneity of the early universe. Classical and Quantum Gravity 23(6), 1875 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Mielczarek, J.: Reheating temperature from the CMB. Physical Review D 83(2), 023502 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  20. El Bourakadi, K., Ferricha-Alami, M., Filali, H., Sakhi, Z., Bennai, M.: Gravitational waves from preheating in Gauss-Bonnet inflation. The European Physical Journal C 81(12), 1–8 (2021)

    Article  Google Scholar 

  21. Bourakadi, K. E., Sakhi, Z., & Bennai, M. (2022). Preheating constraints in\(\alpha \)attractor inflation and Gravitational Waves production. arXiv preprint http://arxiv.org/abs/2209.09241arXiv:2209.09241

  22. Albrecht, A., Steinhardt, P.J., Turner, M.S., Wilczek, F.: Reheating an inflationary universe. Physical Review Letters 48(20), 1437 (1982)

    Article  ADS  Google Scholar 

  23. Allahverdi, R., Brandenberger, R., & Cyr-Racine, F. Y. (2010). Mazumdar, A2010ARNPS. 60.27 A. vol. 60. Annu. Rev. Nucl. Part. Sci, 27

  24. Kolb, E.W., Notari, A., Riotto, A.: Reheating stage after inflation. Physical Review D 68(12), 123505 (2003)

    Article  ADS  Google Scholar 

  25. Sakhi, Z., El Bourakadi, K., Safsafi, A., Ferricha-Alami, M., Chakir, H., Bennai, M.: Effect of brane tension on reheating parameters in small field inflation according to Planck-2018 data. International Journal of Modern Physics A 35(30), 2050191 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  26. Ferricha-Alami, M., Mounzi, Z., Jdair, O., Naciri, M., Bennai, M., Chakir, H.: Randall-Sundrum II model from small field inflation in light of planck data and reheating temperature. Moscow University Physics Bulletin 72, 425–432 (2017)

    Article  ADS  Google Scholar 

  27. Ferricha-Alami, M., Jdair, O., Chakir, H., Bennai, M.: Logarithmic Potential Braneworld in Light of the Recent Experiment Observation. Revista Cubana de Física 35(2), 86–90 (2018)

    Google Scholar 

  28. Khay, I., Salamate, F., Ferricha-Alami, M., Chakir, H., Bennai, M.: Reheating from F-term inflation on brane and gravitino abundance. The European Physical Journal Plus 134(10), 498 (2019)

    Article  ADS  Google Scholar 

  29. Dai, L., Kamionkowski, M., Wang, J.: Reheating constraints to inflationary models. Physical review letters 113(4), 041302 (2014)

    Article  ADS  Google Scholar 

  30. Munoz, J.B., Kamionkowski, M.: Equation-of-state parameter for reheating. Physical Review D 91(4), 043521 (2015)

    Article  ADS  Google Scholar 

  31. Bourakadi, K. E. (2022). Hubble tension and Reheating: Hybrid Inflation Implications. arXiv preprint http://arxiv.org/abs/2208.01162arXiv:2208.01162

  32. Bourakadi, K. E. (2021). Preheating and Reheating after Standard Inflation. arXiv preprint http://arxiv.org/abs/2104.10552arXiv:2104.10552

  33. Schwarz, D.J., Terrero-Escalante, C.A., García, A.A.: Higher order corrections to primordial spectra from cosmological inflation. Physics Letters B 517(3–4), 243–249 (2001)

    Article  ADS  Google Scholar 

  34. Kallosh, R., Linde, A.: Testing string theory with cosmic microwave background. Journal of Cosmology and Astroparticle Physics 2007(04), 017 (2007)

    Article  Google Scholar 

  35. Ferricha-Alami, M., Safsafi, A., Lahlou, L., Chakir, H., Bennai, M.: Tree Level Potential on Brane after Planck and BICEP2. Journal of Astrophysics and Astronomy 36(2), 269–280 (2015)

    Article  ADS  Google Scholar 

  36. Traschen, J.H., Brandenberger, R.H.: Particle production during out-of-equilibrium phase transitions. Physical Review D 42(8), 2491 (1990)

    Article  ADS  Google Scholar 

  37. Monteux, A., Shin, C.S.: Thermal Goldstino production with low reheating temperatures. Physical Review D 92(3), 035002 (2015)

    Article  ADS  Google Scholar 

  38. Munoz, J.B., Kamionkowski, M.: Equation-of-state parameter for reheating. Physical Review D 91(4), 043521 (2015)

    Article  ADS  Google Scholar 

  39. Benetti, M., Graef, L.L., Vagnozzi, S.: Primordial gravitational waves from NANOGrav: A broken power-law approach. Physical Review D 105(4), 043520 (2022)

    Article  ADS  Google Scholar 

  40. Dodelson, S., Hui, L.: Horizon ratio bound for inflationary fluctuations. Physical review letters 91(13), 131301 (2003)

    Article  ADS  Google Scholar 

  41. Martin, J., Ringeval, C.: First CMB constraints on the inflationary reheating temperature. Physical Review D 82(2), 023511 (2010)

    Article  ADS  Google Scholar 

  42. Adshead, P., Easther, R., Pritchard, J., Loeb, A.: Inflation and the scale dependent spectral index: prospects and strategies. Journal of Cosmology and Astroparticle Physics 2011(02), 021 (2011)

    Article  Google Scholar 

  43. Mielczarek, J.: Reheating temperature from the CMB. Physical Review D 83(2), 023502 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  44. Easther, R., & Peiris, H. V. (2012). Bayesian analysis of inflation. II. Model selection and constraints on reheating. Physical Review D, 85(10), 103533

  45. Creminelli, P., Nacir, D.L., Simonovi’c, M., Trevisan, G., Zaldarriaga, M.: \(\phi ^{2}\) inflation at its endpoint. Physical Review D 90(8), 083513 (2014)

    Article  ADS  Google Scholar 

  46. El Bourakadi, K., Bousder, M., Sakhi, Z., Bennai, M.: Preheating and reheating constraints in supersymmetric braneworld inflation. The European Physical Journal Plus 136(8), 1–19 (2021)

    Article  Google Scholar 

  47. Cook, J.L., Dimastrogiovanni, E., Easson, D.A., Krauss, L.M.: (2015), Reheating predictions in single field inflation. J. Cosmol. Astropart. Phys. 04, 047 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hanin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

K. El Bourakadi, M. Ferricha-Alami, Z. Sakhi, and M. Bennai contributed equally to this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanin, A., El Bourakadi, K., Ferricha-Alami, M. et al. Reheating Mechanism from Tree Level Potential in Standard Cosmology. Int J Theor Phys 62, 143 (2023). https://doi.org/10.1007/s10773-023-05364-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05364-2

Keywords

Navigation