Skip to main content
Log in

Negativity, Quantum Entanglement in the Two-dimensional Generalized Hubbard Model

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Quantum correlation and entanglement in the two-dimensional generalized Hubbard model, which is an important model for superconductors of high critical temperature (high-\(T_c\)) are studied. We analyze the behavior of the entanglement negativity like quantum entanglement quantifier, as a function of the energy gap of the quasi-particles \(\Delta \) and temperature T, with aim to analyze the effect of opening of the gap of the spectrum of excitations and temperature on entanglement negativity. Thus, we obtain a small influence of gap \(\Delta \) on multipartite entanglement and a divergence of the entanglement at \(T= 0\) limit due to the increase quantum fluctuations in this point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability Statement

All data generated or analysed during this study are included in this paper.

References

  1. Kaczmarczyk, J., Spalek, J., Schickling, T., Bunemann, J.: Phys. Rev. B 88, 115127 (2013)

    Article  ADS  Google Scholar 

  2. Scalapino, D.J.: Handbook of High-Temperature Superconductivity, edited by J. R. Schrieffer and J. S. Brooks, Springer, New York (2007)

    Google Scholar 

  3. Norman, M.R.: J. Supercond. Nov. Magn. 25, 2131 (2012)

    Article  Google Scholar 

  4. Ogata, M., Fukuyama, H.: Rep. Prog. Phys. 71, 036501 (2008)

    Article  ADS  Google Scholar 

  5. Lee, P.A., Nagaosa, N., Wen, X.G.: Rev. Mod. Phys. 78, 17 (2006)

    Article  ADS  Google Scholar 

  6. Lima, L.S., Pires, A.S.T., Costa, B.V.: Physica A. 438, 579 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  7. Lima, L.S., Pires, A.S.T., Costa, B.V.: J. Magn. Magn. Mater. 371, 89 (2014)

    Article  ADS  Google Scholar 

  8. Scalapino, D.J.: Review of Modern Physics 84, 1383 (2012)

    Article  ADS  Google Scholar 

  9. Sachdev, S.: Science 336, 1510 (2012)

    Article  ADS  Google Scholar 

  10. Chowdhury, D., Orenstein, J., Sachdev, S., Senthil, T.: arXiv:1502.04122v1, (2015)

  11. Chowdhury, D., Sachdev, S.: Quantum Criticality in Condensed Matter 1-43, (2015)

  12. Maiti, Saurabh, Chubukov, Andrey V.: AIP Conference Proceedings 1550, 3 (2013)

    Article  ADS  Google Scholar 

  13. Laflorencie, N.: Physics Reports 646, 1 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  14. Bruss, D., Leuchs, F.: Lectures on Quantum Information. WILEY-VCH Verlag, Weinheim, Germany (2007)

    MATH  Google Scholar 

  15. Lima, L.S.: Physica E 128, 114580 (2021)

    Article  Google Scholar 

  16. Lima, L.S.: Eur. Phys. J. D 75, 28 (2021)

    Article  ADS  Google Scholar 

  17. Lima, L.S.: J. Low Temp. Phys. 205, 112 (2021)

    Article  ADS  Google Scholar 

  18. Fradkin, E.: Field Theories of Condensed Matter Physics, second edition, Cambridge, U.K (2013)

  19. Jia-Dong Shi, J. Chen, C. Liu, J. He, L. Yu, T. Wu, J. Stat. Mech. (2019) 123104; D. Wang, T. Wu, Xue-Ke Song, L. Ye, International Journal of Modern Physics B 28, (2014) 1450049; Jia-Dong Shi, D. Wang, L. Ye, Quantum Inf. Process 15, (2016) 1649; Jia-Dong Shi, D. Wang, Wen-Chao Ma, L. Ye, Quantum Inf. Process 14, (2015) 3569; Jia-Dong Shi, S. Xu, Wen-Chao Ma, Xue-Ke Song, L. Ye, Quantum Inf. Process 14, (2015) 1387; Jia-Dong Shi, T. Wu, Xue-Ke Song, L. Ye, Quantum Inf. Process 13, (2014) 1045

  20. Yan, Xin-Zhong.: Phys. Rev. B 71, 104520 (2005)

    Article  ADS  Google Scholar 

  21. Jong Soo Lim, Choi, M.Y., Beom Jun Kim: J. Choi, Phys. Rev. B 71, 100505(R) (2005)

  22. Zhao, Guo-meng: Phys. Rev. B 71, 104517 (2005)

    Article  ADS  Google Scholar 

  23. Its, A.R., Jin, B.-Q., Korepin, V.E.: J. Phys. A: Math. Gen. 38, 2975 (2005)

    Article  ADS  Google Scholar 

  24. Latorre, J.I., Rico, E., Vidal, G.: Quant. Inf. Comput. 4, 48 (2004)

    Google Scholar 

  25. Calabrese, P., Cardy, John: J. Stat. Mech. P06002 (2004)

  26. Bianchini, D., Castro-Alvaredo, O. A., B. Doyon, E. Levi, F. Ravanini, J. Phys. A: Math. Theor. 48 04FT01 (2014)

  27. Vidal, G., Latorre, J.L., Rico, E.I., Kitaev, A.: Phys. Rev. Lett. 90, 227902 (2003)

    Article  ADS  Google Scholar 

  28. Calabrese, P.: Physica A 504, 31 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  29. Hill, S., Wooters, W.K.: Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  30. Wooters, W.K.: Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  31. Gálisová, L.: J. Phys. Condens. Matter 31, 465801 (2019)

    Article  ADS  Google Scholar 

  32. Vidal, G., Werner, R.F.: Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  33. Zyczkowski, K., Horodecki, P., Sanpera, A., Lewenstein, M.: Phys. Rev. A 58, 883 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  34. Plenio, M.B.: Phys. Rev. Lett. 95, 090503 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  35. Vidal, G., Werner, R.F.: Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  36. Song, X.K., Wu, T., Ye, L.: Eur. Phys. J. D 67, 96 (2013)

    Article  ADS  Google Scholar 

  37. Castelnovo, C.: Phys. Rev. A 88, 042319 (2013)

    Article  ADS  Google Scholar 

  38. Lee, Y.A., Vidal, G.: Phys. Rev. A 88, 042318 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by National Council for Scientific and Technological Development (CNPq) Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Lima.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, L.S. Negativity, Quantum Entanglement in the Two-dimensional Generalized Hubbard Model. Int J Theor Phys 62, 93 (2023). https://doi.org/10.1007/s10773-023-05353-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05353-5

Keywords

Navigation