Skip to main content
Log in

A Novel Semi-Quantum Co-Signature Scheme Based on GHZ States and Four-Particle Cluster States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The application of semi-quantum key distribution (SQKD) facilitates the development of semi-quantum technology, and semi-quantum signature (SQS) schemes emerged. However, there is no relatively complete security analyses of SQS schemes like SQKD protocols in existing works. Motivated by the four-particle cluster states and semi-quantum cryptography, we propose a novel semi-quantum co-signature (SQCS) scheme based on GHZ states and four-particle cluster states. Meanwhile, we provide the relatively complete security analyses of SQS schemes. In addition, the analyses indicate that the proposed SQCS scheme under limited resources is more secure and effective than some typical quantum signature (QS) schemes and SQS schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical Bob [J]. Phys. Rev. Lett. 99, 140501 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Sun, Z.W., Du, R.G., Long, D.Y.: Quantum key distribution with limited classical Bob [J]. Int. J. Quantum Inf. 11(01), 1350005 (2013)

    Article  MathSciNet  Google Scholar 

  3. Yu, K.F., Yang, C.W., Liao, C.H., Hwang, T.: Authenticated semi-quantum key distribution protocol using Bell states [J]. Quantum Inf. Process. 13(6), 1457–1465 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Zhang, W., Qiu, D.W.: A single-state semi-quantum key distribution protocol and its security proof [J]. arXiv preprint arXiv:1612.03087 (2016)

  5. Liu, Z.R., Hwang, T.: Mediated semi-quantum key distribution without invoking quantum measurement [J]. Ann. Phys. 530(4), 1700206 (2018)

    Article  MathSciNet  Google Scholar 

  6. Li, L.Z., Qiu, D.W., Mateus, P.: Quantum secret sharing with classical Bobs [J]. J. Phys. A: Math. Theor. 46(4), 045304 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Xie, C., Li, L.Z., Qiu, D.W.: A novel semi-quantum secret sharing scheme of specific bits[J]. Int. J. Theor. Phys. 54(10), 3819–3824 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ye, C.Q., Ye, T.Y.: Circular semi-quantum secret sharing using single particles [J]. Commun. Theor. Phys. 70(6), 661 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Zeng, G., Ma, W., Wang, X., Zhu, H.W.: Signature scheme based on quantum cryptography [J]. Acta Electron. Sin. 29(8), 1098–1100 (2001)

    Google Scholar 

  10. Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using Bell states [J]. Phys. Rev. A 79(5), 054307 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  11. Li, C., Tian, Y., Chen, X., Li, J.: An efficient anti-quantum lattice-based blind signature for blockchain-enabled systems [J]. Inf. Sci. 546, 253–264 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  12. Yin, A.H., Tong, Y.: A novel semi-quantum secret sharing scheme using entangled states [J]. Mod. Phys. Lett. B 32(22), 1850256 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  13. Zhao, X.Q., Chen, H.Y., Wang, Y.Q., Zhou, N.: Semi-quantum bi-signature scheme based on W states [J]. Int. J. Theor. Phys. 58(10), 3239–3251 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dai, J., Zhang, S., Chang, Y., Li, X., Zheng, T.: A semi-quantum group signature scheme based on Bell states [C]. In: International Conference on Artificial Intelligence and Security, pp. 246–257. Springer, Cham (2020)

  15. Zheng, T., Chang, Y., Yan, L., Zhang, S.B.: Semi-quantum proxy signature scheme with quantum walk-based teleportation [J]. Int. J. Theor. Phys. 59(10), 3145–3155 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhang, W., Qiu, D.W., Mateus, P.: Security of a single-state semi-quantum key distribution protocol [J]. Quantum Inf. Process. 17(6), 1–21 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zou, X.F., Qiu, D.W., Li, L.Z., Wu, L.H., Li, L.J.: Semiquantum-key distribution using less than four quantum states [J]. Phys. Rev. A 79(5), 052312 (2009)

    Article  ADS  Google Scholar 

  18. Krawec, W.O.: Security proof of a semi-quantum key distribution protocol [C]. In: 2015 IEEE International Symposium on Information Theory (ISIT), pp. 686–690. IEEE (2015)

  19. Lin, P.H., Tsai, C.W., Hwang, T.: Mediated semi-quantum key distribution using single photons[J]. Ann. Phys. 531(8), 1800347 (2019)

    Article  MathSciNet  Google Scholar 

  20. Tsai, C.W., Yang, C.W.: Lightweight authenticated semi-quantum key distribution protocol without trojan horse attack [J]. Laser Phys. Lett. 17(7), 075202 (2020)

    Article  ADS  Google Scholar 

  21. Hajji, H., El Baz, M.: Qutrit-based semi-quantum key distribution protocol [J]. Quantum Inf. Process. 20(1), 1–25 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Raussendorf, R., Harrington, J.: Fault-tolerant quantum computation with high threshold in two dimensions [J]. Phys. Rev. Lett. 98(19), 190504 (2007)

    Article  ADS  Google Scholar 

  23. Iqbal, H., Krawec, W.O.: Semi-quantum cryptography [J]. Quantum Inf. Process. 19(3), 1–52 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Bouwmeester, D., Pan, J.W., Daniell, M., Weinfurter, H., Zeilinger, A.: Observation of three-photon Greenberger-Horne-Zeilinger entanglement [J]. Phys. Rev. Lett. 82(7), 1345–1349 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Boyer, M., Gelles, R., Kenigsberg, D., Mor, T.: Semiquantum key distribution. Phys. Rev. A 79(3), 032341 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Gottesman, D., Chuang, I.: Quantum digital signatures [J]. arXiv preprint quant-ph/0105032 (2001)

  27. Devetak, I., Winter, A.: Distillation of secret key and entanglement from quantum states[J]. Proc. R. Soc. A: Math. Phys. Eng. Sci. 461(2053), 207–235 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Cabello, A.: Quantum key distribution in the Holevo limit [J]. Phys. Rev. Lett. 85(26), 5635 (2000)

    Article  ADS  Google Scholar 

  29. Wen, X.J., Zhao, X.Q., Gong, L.H., Zhou, N.R.: A semi-quantum authentication protocol for message and identity [J]. Laser Phys. Lett. 16(7), 075206 (2019)

    Article  ADS  Google Scholar 

  30. Zhou, N.R., Zhu, K.N., Zou, X.F.: Multi-party semi-quantum key distribution protocol with four-particle cluster states [J]. Ann. Phys. 531(8), 1800520 (2019)

    Article  MathSciNet  Google Scholar 

  31. Zhou, J., Zhou, Y., Niu, X., Yang, Y.: Quantum proxy signature scheme with public verifiability [J]. Sci. China Phys. Mech. Astron. 54(10), 1828 (2011)

    Article  ADS  Google Scholar 

  32. Li, Q., Li, C., Wen, Z., Zhao, W., Chan, W.H.: On the security of arbitrated quantum signature schemes [J]. J. Phys. A: Math. Theor. 46(1), 015307 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Dunjko, V., Wallden, P., Andersson, E.: Quantum digital signatures without quantum memory [J]. Phys. Rev. Lett. 112(4), 040502 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Xingqiang Zhao and Tianlong Chen wrote the main manuscript text. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Xingqiang Zhao or Tianlong Chen.

Ethics declarations

Competing Interests

The authors declare no competing interests

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Chen, T. A Novel Semi-Quantum Co-Signature Scheme Based on GHZ States and Four-Particle Cluster States. Int J Theor Phys 62, 78 (2023). https://doi.org/10.1007/s10773-023-05329-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05329-5

Keywords

Navigation