Skip to main content
Log in

Practical Demonstration of Quantum Key Distribution Protocol with Error Correction Mechanism

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum Key Distribution is a major building block of Quantum cryptography. A Quantum key is generated through the quantum particles. Quantum particles perform operations based on quantum mechanical principles like superposition and entanglement. With these principles, it is not possible for a third party to observe the quantum information. This proves that the Quantum key is highly secured and unbreakable compared to the current existing classical keys. But the major problem observed with quantum information is inbuilt noise which results in high error rates. To overcome this problem, we propose a Quantum key distribution protocol with entanglement purification and asymmetric quantum error correction. With the experiment, we have observed that the proposed method reduces the third-party quantum key detection probability and also increases the quantum key length and communication efficiency by reducing the error rate to 0.04%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Algorithm 2
Algorithm 3
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Vernam, G.S.: Cipher printing telegraph systems: for secret wire and radio telegraphic communications. J. AIEE 45(2), 109–115 (1926)

    Google Scholar 

  2. Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4), 656–715 (1949). https://doi.org/10.1002/j.1538-7305.1949.tb00928.x

    Article  MathSciNet  MATH  Google Scholar 

  3. Bennett, C.H., Brassard, G.: BB84. In: IEEE International Conference on Computers, Systems, and Signal Processing (1984)

  4. Wootters, W.K., Zurek, W.H.: The no-cloning theorem. Phys. Today 62(2), 76–77 (2009)

    Article  Google Scholar 

  5. Ekert, A.K.: Quantum Cryptography and Bell’s Theorem. Quantum Measurements in Optics, pp 413–418. Springer, Boston (1992)

    Book  Google Scholar 

  6. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Mummadi, S., Rudra, B.: Implementation of reversible logic gates with quantum gates. In: IEEE 11th 459 Annual Computing and Communication Workshop and Conference (CCWC). IEEE, pp. 1557–1563 (2021)

  8. Mummadi, S., Rudra, B.: An efficient approach for quantum entanglement purification. Int. J. Quantum Inf. 20(04), 2250004 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  9. DiVincenzo, D.P., Shor, P.W.: Fault-tolerant error correction with efficient quantum codes. Phys. Rev. Lett. 77(15), 3260 (1996)

    Article  ADS  Google Scholar 

  10. Gill, S.S., Kumar, A., Singh, H., Singh, M., Kaur, K., Usman, M., Buyya, R.: Quantum computing: a taxonomy, systematic review and future directions. Emerging Technol. (cs.ET). arXiv:2010.15559 [cs.ET] (2020)

  11. Swathi, M., Rudra, B.: A novel architecture for binary code to gray code converter using quantum cellular automata. In: Edge Analytics: Select Proceedings of 26th International Conference—ADCOM 2020, pp. 43–61 (2022)

  12. Song, D.: Secure key distribution by swapping quantum entanglement. Phys. Rev. A 69(3), 034301 (2004)

    Article  ADS  Google Scholar 

  13. Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Phys. Rev. Lett. 81(14), 3018 (1998)

    Article  ADS  Google Scholar 

  14. Gisin, N., Pellaux, J.-P.: Polarization mode dispersion: time versus frequency domains. Optics Commun. 89(2-4), 316–323 (1992)

    Article  ADS  Google Scholar 

  15. Guo, F., et al: Quantum key distribution based on entanglement swapping between two Bell states. Int. J. Quantum Inf. 4(05), 769–779 (2006)

    Article  MATH  Google Scholar 

  16. Dušek, M., Lütkenhaus, N., Hendrych, M.: Quantum cryptography. Prog. Opt. 49, 381–454 (2006)

    Article  ADS  Google Scholar 

  17. Gao, G.: Quantum key distribution by comparing Bell states. Optics Commun. 281(4), 876–879 (2008)

    Article  ADS  Google Scholar 

  18. Honjo, T., et al.: Long-distance entanglement-based quantum key distribution over optical fiber. Opt. Express 16(23), 19118–19126 (2008)

    Article  ADS  Google Scholar 

  19. Ribordy, G., et al.: Long-distance entanglement-based quantum key distribution. Phys. Rev. A 63(1), 012309 (2000)

    Article  ADS  Google Scholar 

  20. Yin, J., et al: Satellite-to-ground entanglement-based quantum key distribution. Phys. Rev. Lett. 119(20), 200501 (2017)

    Article  ADS  Google Scholar 

  21. Peloso, M.P., et al: Daylight operation of a free space, entanglement-based quantum key distribution system. New J. Phys. 11(4), 045007 (2009)

    Article  ADS  Google Scholar 

  22. Shi, Y., et al: Stable polarization entanglement based quantum key distribution over a deployed metropolitan fiber. Appl. Phys. Lett. 117(12), 124002 (2020)

    Article  ADS  Google Scholar 

  23. Jogenfors, J., et al: Hacking the Bell test using classical light in energy-time entanglement–based quantum key distribution. Sci. Adv. 1(11), e1500793 (2015)

    Article  ADS  Google Scholar 

  24. Dong, J., Teng, J.: Quantum key distribution protocol of mesh network structure based on n + 1 EPR pairs. J. Syst. Eng. Electron. 21(2), 334–338 (2010)

    Article  Google Scholar 

  25. Liu, X., et al: An entanglement-based quantum network based on symmetric dispersive optics quantum key distribution. APL Photonics 5(7), 076104 (2020)

    Article  ADS  Google Scholar 

  26. Ursin, R., et al.: Entanglement-based quantum communication over 144 km. Nature Phys. 3(7), 481–486 (2007)

    Article  ADS  Google Scholar 

  27. Liu, X., et al.: 40-user fully connected entanglement-based quantum key distribution network without trusted node. PhotoniX 3(1), 1–15 (2022)

    Article  Google Scholar 

  28. Liu, W.-Z., et al: Toward a photonic demonstration of device-independent quantum key distribution. Phys. Rev. Lett. 129(5), 050502 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  29. Wang, J., Huberman, B.A.: An overview on deployment strategies for global quantum key distribution networks. Wirel. Commun. Mob. Comput. 2022 (2022)

  30. Li, W., Wang, L., Zhao, S.: Extended single-photon entanglement-based phase-matching quantum key distribution. Quantum Inf. Process. 21(4), 1–12 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Nadlinger, D.P., et al.: Experimental quantum key distribution certified by Bell’s theorem. Nature 607(7920), 682–686 (2022)

    Article  ADS  Google Scholar 

  32. Zhou, H., et al.: Quantum Network: security assessment and key management. IEEE/ACM Trans. Netw. (2022)

  33. Molotkov, S.N.: ‘Pushing’keys through quantum networks and the complexity of search of the true key. Laser Phys. Lett. 19(4), 045201 (2022)

    Article  ADS  Google Scholar 

  34. Nadlinger, D.P., et al.: Experimental quantum key distribution certified by Bell’s theorem. Nature 607(7920), 682–686 (2022)

    Article  ADS  Google Scholar 

  35. Ji, Z., Fan, P., Zhang, H.: Entanglement swapping for Bell states and Greenberger–Horne–Zeilinger states in qubit systems. Physica A: Stat. Mech. Appl. 585, 126400 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  36. Poulin, D.: Stabilizer formalism for operator quantum error correction. Phys. Rev. Lett. 95(23), 230504 (2005)

    Article  ADS  Google Scholar 

  37. Wootton, J.R., Loss, D.: Repetition code of 15 qubits. Phys. Rev. A 97(5), 052313 (2018)

    Article  ADS  Google Scholar 

  38. Aly, S.A., Klappenecker, A., Sarvepalli, P.K.: On quantum and classical BCH codes. IEEE Trans. Inf. Theory 53(3), 1183–1188 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Steane, A.M.: Enlargement of calderbank-shor-steane quantum codes. IEEE Trans. Inf. Theory 45(7), 2492–2495 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  40. Gottesman, D.: Stabilizer codes and quantum error correction. California Institute of Technology (1997)

  41. Zhou, C., et al.: High-throughput decoder of quasi-cyclic LDPC codes with limited precision for continuous-variable quantum key distribution systems. arXiv:2207.01860 (2022)

  42. Ashikhmin, A., Knill, E.: Nonbinary quantum stabilizer codes. IEEE Trans. Inf. Theory 47(7), 3065–3072 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  43. Sarvepalli, P.K., Klappenecker, A., Rötteler, M.: Asymmetric quantum codes: constructions, bounds and performance. Proc. Royal Society A: Math. Phys. Eng. Sci. 465(2105), 1645–1672 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Ioffe, L., Mézard, M.: Asymmetric quantum error-correcting codes. Phys. Rev. A 75(3), 032345 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  45. Hsieh, M.-H., Devetak, I., Brun, T.: General entanglement-assisted quantum error-correcting codes. Phys. Rev. A 76(6), 062313 (2007)

    Article  ADS  Google Scholar 

  46. Galindo, C., et al.: Asymmetric entanglement-assisted quantum error-correcting codes and BCH codes. IEEE Access 8, 18571–18579 (2020)

    Article  Google Scholar 

  47. Mummadi, S., Rudra, B.: A novel approach for asymmetric quantum error correction with syndrome measurement. IEEE Access 10, 44669–44676 (2022)

    Article  Google Scholar 

  48. Zhang, C.-Y., Zheng, Z.-J.: Entanglement-based quantum key distribution with untrusted third party. Quantum Inf. Process. 20(4), 1–20 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Qin, L., Li, Y., Wang, S.: A key distribution protocol based on quantum entanglement swapping for unmanned surface vehicle. J. Phys. Conf. Series 1976(1), 012034 (2021)

    Article  Google Scholar 

  50. Swathi, M, Rudra, B.: Novel encoding method for quantum error correction. IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC), pp. 1001–1005 (2022)

  51. Swathi, M, Rudra, B.: Experimental analysis of a quantum encoder in various quantum systems. In: 2022 IEEE 13th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), pp. 0138–0143 (2022)

  52. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85(26), 5635 (2000)

    Article  ADS  Google Scholar 

  53. Mehic, M., et al.: Quantum key distribution: a networking perspective. ACM Comput. Surveys (CSUR) 53(5), 1–41 (2020)

    Article  Google Scholar 

  54. Sharma, P., et al.: Quantum key distribution secured optical networks: a survey. IEEE Open J. Commun. Soc. 2, 2049–2083 (2021)

    Article  Google Scholar 

  55. Maurhart, O.: QKD Networks Based on Q3P. Applied Quantum Cryptography, pp 151–171. Springer, Berlin Heidelberg (2010)

    Book  Google Scholar 

  56. Wang, J., Huberman, B.A.: An overview on deployment strategies for global quantum key distribution networks. Wirel. Commun. Mob. Comput. 2022 (2022)

  57. Liu, R., et al.: Towards the industrialisation of quantum key distribution in communication networks: a short survey. IET Quantum Commun. 3(3), 151–163 (2022)

    Article  MathSciNet  Google Scholar 

  58. Cao, Y., et al.: The evolution of quantum key distribution networks: on the road to the qinternet. IEEE Commun. Surv. Tutorials 24(2), 839–894 (2022)

    Article  Google Scholar 

  59. Tsai, C.-W., et al.: Quantum key distribution networks: challenges and future research issues in security. Appl. Sci. 11(9), 3767 (2021)

    Article  Google Scholar 

  60. Sasaki, M., et al.: Field test of quantum key distribution in the Tokyo QKD network. Opt. Express 19(11), 10387–10409 (2011)

    Article  ADS  Google Scholar 

  61. Wang, S., et al.: Field and long-term demonstration of a wide area quantum key distribution network. Opt. Express 22(18), 21739–21756 (2014)

    Article  ADS  Google Scholar 

  62. Stucki, D., et al: Long-term performance of the SwissQuantum quantum key distribution network in a field environment. New J. Phys. 13(12), 123001 (2011)

    Article  ADS  Google Scholar 

  63. IBM Quantum. https://quantum-computing.ibm.com/ (2021)

Download references

Acknowledgements

We are extremely grateful to the IBM team for providing access to IBM Quantum Experience (QE). The discussions and opinions developed in this paper are only those of the authors and do not reflect the opinions of IBM or IBM QE team.

Funding

Not Applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swathi Mummadi.

Ethics declarations

Conflict of Interests

We do not have any conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Bhawana Rudra contributed equally to this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mummadi, S., Rudra, B. Practical Demonstration of Quantum Key Distribution Protocol with Error Correction Mechanism. Int J Theor Phys 62, 86 (2023). https://doi.org/10.1007/s10773-023-05324-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05324-w

Keywords

Navigation