Skip to main content
Log in

Hydrogen Atom Second Solution: Physical and Chemical Interpretations

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We mainly study the ground state of the hydrogen atom in terms of the second kind of Legendre functions. We use a special self-adjoint transformation of the Schrödinger equation to obtain a self-adjoint operator and wave functions based on the second kind of Legendre functions without discontinuity. The projection of this wave function in terms of the complete set of the usual hydrogen atom solutions indicates the presence of a continuum. It is possible to infer that the normal hydrogen atom is weakly unstable in the presence of electromagnetic field, matter, or even quantum vacuum fluctuations due to the coupling with the continuum of the second solution. We discuss that the second solution behavior could be responsible for triggering the formation of chemical bonds. We also studied the temporal evolution of the second solution probability density, which shows an intricate structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Messiah, A.: Mecánica Cuántica. Tecnos, Madrid (1983)

    Google Scholar 

  2. Kato, T.: . Trans. Amer. Math. Soc. 70, 195 (1951)

    MathSciNet  Google Scholar 

  3. Arfken, G., Weber, H.: Mathematical Methods for Physicists, 6st ed., Orlando FL: Elsevier Inc. (2005)

  4. López-Castillo, A., de Oliveira, C.R.: . J. Phys. A 39, 3447 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  5. Pauling, L., Wilson, JrE. B.: Introduction to Quantum Mechanics with Applications to Chemistry. Dover, New York (1963)

    Google Scholar 

  6. Levine, I.: Quantum chemistry, 5th ed., New Jersey: Prentice Hall (1991)

  7. López-Castillo, A.: . Theor. Chem. Acc. 139, 51 (2020)

    Article  Google Scholar 

  8. Smirnov, V.: Cours de Mathematiques Superieures, vol. 2, 2nd ed. Moscou: Mir (1970)

  9. Landau, L.D., Lifshitz, E.M.: Mecánica Cuántica No-Relativista. Editorial Reverté, Barcelona (1983)

    Google Scholar 

  10. Kemble, E.C.: The fundamental principles of quantum mechanics with elementary applications, McGraw-hill book company, Incorporated, footnote in p. 152 (1937)

  11. Research, Wolfram: Inc., Mathematica Version 10.0, Champaign, IL (2014)

  12. https://imagej.nih.gov/ij/;http://www.fractal-lab.org/

  13. López-Castillo, A.: . Theor. Chem. Acc. 139, 149 (2020)

    Article  Google Scholar 

  14. Mulliken, R.S., Rieke, C.A., Orloff, D., Orloff, H.: . J. Chem. Phys. 17, 1248 (1949)

    Article  ADS  Google Scholar 

  15. Moreno, R.R.M., Teixeira, L.S.G.: . Química Nova 22, 882 (1999)

    Article  Google Scholar 

  16. Bates, D.R., Ledsham, K., Stewart, A.L.: . Mathematical and Physical Sciences Series A. 911, 215 (1953)

    Google Scholar 

  17. Patil, S.H.: . J. Chem. Phys. 188, 2197 (2003)

    Article  ADS  Google Scholar 

  18. López-Castillo, A.: . Comp. Theo. Chem. 1205, 113438 (2021)

    Article  Google Scholar 

  19. Loudon, R.: . Am. J. Phys. 27, 649 (1959)

    Article  ADS  Google Scholar 

  20. Loudon, R.: . Proc. R. Soc. A. 472, 20150534 (2016)

    Article  ADS  Google Scholar 

  21. Green, L.C., Mulder, M.M., Milner, P.C., Lewis, M.N., Jr. Woll, J.W., Kolchin, E.K., Mace, D.: . Phys. Rev. 96, 319 (1954)

    Article  ADS  Google Scholar 

  22. Shull, H., Löwdin, P.-O.: . J. Chem. Phys. 23, 1362 (1956)

    Article  ADS  Google Scholar 

  23. Hylleraas, E.A.: . Z. Physik 48, 469 (1928)

    Article  ADS  Google Scholar 

  24. Taylor, G.R., Parr, R.G.: . Proc. Natl. Acad. Sci. U. S. 38, 154 (1952)

    Article  ADS  Google Scholar 

  25. Marmorino, M.G.: . J. Math. Chem. 27, 27 (2000)

    Article  MathSciNet  Google Scholar 

  26. Berry, M.V.: . J. Phys. A 29, 6617 (1996)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This study was supported by São Paulo Research Foundation (FAPESP, Fundação de Amparo a Pesquisa do Estado de São Paulo): grant 2019/12501-0 and partially financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES): Finance Code 001 and Fundación Carolina/Grupo de Tordesillas.

Author information

Authors and Affiliations

Authors

Contributions

ALC wrote the main manuscript text; ALC and EF developed the studies.

Corresponding author

Correspondence to Alejandro López-Castillo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flauzino, E., López-Castillo, A. Hydrogen Atom Second Solution: Physical and Chemical Interpretations. Int J Theor Phys 62, 80 (2023). https://doi.org/10.1007/s10773-023-05322-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05322-y

Keywords

Navigation