Skip to main content
Log in

Global Quantum Discord and Entanglement in two Coupled Double Quantum Dots AlGaAs/GaAs

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

This work presents a theoretical study on the behavior of global quantum discord and entanglement in two coupled double quantum dots made of AlGaAs/GaAs as a function of temperature. We use each double quantum dot as a qubit, where the electron can occupy either the right or left dot. The goal of our investigation is to understand the impact of the energy offset of each qubit and the tunneling coupling energy on quantum correlations. Our findings show that the energy offset and tunneling coupling energy significantly affect the variations of entanglement of formation, standard discord, and global quantum discord. Our results provide insights into the interplay between quantum correlations and environmental parameters and have important implications for the development of quantum technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adesso, G., Bromley, T.R., Cianciaruso, M.: Measures and applications of quantum correlations. J. Phys. A Math. Theor. 49(47), 473001 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Almeida, M., Gu, M., Fedrizzi, A., Broome, M.A., Ralph, T.C., White, A.G.: Entanglement-free certification of entangling gates. Phys. Rev. A 89(4), 042323 (2014)

    Article  ADS  Google Scholar 

  3. Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Modern Phys. 80(2), 517 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Anderlini, M., Lee, P.J., Brown, B.L., Sebby-Strabley, J., Phillips, W.D., Porto, J.V.: Controlled exchange interaction between pairs of neutral atoms in an optical lattice. Nature 448(7152), 452–456 (2007)

    Article  ADS  Google Scholar 

  5. Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100(5), 050502 (2008)

    Article  ADS  Google Scholar 

  6. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)

    Article  ADS  MATH  Google Scholar 

  7. Fanchini, F., Castelano, L., Caldeira, A.: Entanglement versus quantum discord in two coupled double quantum dots. New J. Phys. 12(7), 073009 (2010)

    Article  ADS  Google Scholar 

  8. Fölling, S., Trotzky, S., Cheinet, P., Feld, M., Saers, R., Widera, A., Müller, T., Bloch, I.: Direct observation of second-order atom tunnelling. Nature 448(7157), 1029–1032 (2007)

    Article  ADS  Google Scholar 

  9. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A Math. Gen. 34(35), 6899 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Kane, B.E.: A silicon-based nuclear spin quantum computer. Nature 393(6681), 133–137 (1998)

    Article  ADS  Google Scholar 

  11. Lanyon, B., Barbieri, M., Almeida, M., White, A.: Experimental quantum computing without entanglement. Phys. Rev. Lett. 101(20), 200501 (2008)

    Article  ADS  Google Scholar 

  12. Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57(1), 120 (1998)

    Article  ADS  Google Scholar 

  13. Mansour, H.A., Siyouri, F.: Wigner function as a detector of entanglement in open two coupled INaS semiconductor quantum dots. Int. J. Theor. Phys. 61(4), 118 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mansour, H.A., Siyouri, F., Faqir, M., El Baz, M.: Quantum correlations dynamics in two coupled semiconductor INaS quantum dots. Phys. Scr. 95(9), 095101 (2020)

    Article  ADS  Google Scholar 

  15. Mukherjee, A., Shim, Y., Myong Song, J.: Quantum dot as probe for disease diagnosis and monitoring. Biotechnol. J. 11(1), 31–42 (2016)

    Article  Google Scholar 

  16. Nielsen, M.A., Chuang, I.: Quantum computation and quantum information (2002)

  17. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88(1), 017901 (2001)

    Article  ADS  MATH  Google Scholar 

  18. Pirandola, S.: Quantum discord as a resource for quantum cryptography. Sci. Rep. 4, 6956 (2014)

    Article  ADS  Google Scholar 

  19. Rosenthal, S.J., Chang, J.C., Kovtun, O., McBride, J.R., Tomlinson, I.D.: Biocompatible quantum dots for biological applications. Chem. Biol. 18 (1), 10–24 (2011)

    Article  Google Scholar 

  20. Rulli, C., Sarandy, M.: Global quantum discord in multipartite systems. Phys. Rev. A 84(4), 042109 (2011)

    Article  ADS  Google Scholar 

  21. Shinkai, G., Hayashi, T., Ota, T., Fujisawa, T.: Correlated coherent oscillations in coupled semiconductor charge qubits. Phys. Rev. Lett. 103 (5), 056802 (2009)

    Article  ADS  Google Scholar 

  22. Siyouri, F.-Z., Mansour, H.A.: Robustness of Wigner function negativity under the exciton-exciton interaction effects inside two coupled semiconductor quantum dots. Q. Inf. Process. 20, 1–10 (2021)

    MathSciNet  MATH  Google Scholar 

  23. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80(10), 2245 (1998)

    Article  ADS  MATH  Google Scholar 

  24. Yamamoto, T., Pashkin, Y.A., Astafiev, O., Nakamura, Y., Tsai, J.-S.: Demonstration of conditional gate operation using superconducting charge qubits. Nature 425(6961), 941–944 (2003)

    Article  ADS  Google Scholar 

  25. Zhang, W.-H., Ma, W., Long, Y.-T.: Redox-mediated indirect fluorescence immunoassay for the detection of disease biomarkers using dopamine-functionalized quantum dots. Anal. Chem. 88(10), 5131–5136 (2016)

    Article  Google Scholar 

  26. Zurek, W.H.: Einselection and decoherence from an information theory perspective. Ann. Phys. 9(11-12), 855–864 (2000)

    Article  MathSciNet  Google Scholar 

  27. Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75(3), 715 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hicham Ait Mansour.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ait Mansour, H., Faqir, M. & El Baz, M. Global Quantum Discord and Entanglement in two Coupled Double Quantum Dots AlGaAs/GaAs. Int J Theor Phys 62, 58 (2023). https://doi.org/10.1007/s10773-023-05312-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05312-0

Keywords

Navigation