Skip to main content
Log in

Macroscopic Entangled Cat State in Cavity Optomechanics

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We propose a double-opto-mechanical set-up capable of generating a macroscopic entangled cat state of mechanical oscillators. Bridged by the ultra-strong coupling of light and atom, a modulation of opto-mechanical can amplify the observable displacement of the mechanical oscillators. We calculate the logarithmic negativity and joint Wigner functions to demonstrate the entanglement and quantum coherence effects between two mechanical oscillators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pan, J.W., Bouwmeester, D., Weinfurter, H., Zeilinger, A.: . Phys. Rev. Lett. 80, 3891 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  2. Wilk, T.G., Gaetan, A., Evellin, C., et al.: . Phys. Rev. Lett. 104, 010502 (2010)

    Article  ADS  Google Scholar 

  3. Hon, X.W., Chen, J.Q., Ma, Z.Q.: ., vol. 74 (2006)

  4. Sockett, C.A., et al.: . Nature 404, 256 (2000)

    Article  ADS  Google Scholar 

  5. Recher, R., Sukhorukov, E.V., Loss, D.: . Phys. Rev. B 63, 165314 (2001)

    Article  ADS  Google Scholar 

  6. Ourjoumtsev, A., Jeong, H., Tualle-Brouri, R., Grangier, P.: . Nature 448, 784 (2007)

    Article  ADS  Google Scholar 

  7. Zhang, F.Y., Yang, C.P.: . Quantum Sci. Technol. 6, 025003 (2021)

    Article  ADS  Google Scholar 

  8. Sarlette, A., Leghtas, Z., Brune, M., Raimond, J.M., Rouchon, P.: . Phys. Rev. A 86, 012114 (2012)

    Article  ADS  Google Scholar 

  9. Wang, C., et al.: . Science 352,6289, 1087 (2016)

    Article  Google Scholar 

  10. Zhang, J., et al.: . Phys. Rev. A. 68, 013808 (2003)

    Article  ADS  Google Scholar 

  11. Hofheinz, M., et al.: . Nature (London) 459, 546 (2009)

    Article  ADS  Google Scholar 

  12. Zhong, Z.R., et al.: . Phys. Rev. A 98, 032311 (2019)

    Article  ADS  Google Scholar 

  13. Vitali, D., et al.: . Phys. Rev. Lett. 98(3), 030405 (2007)

    Article  ADS  Google Scholar 

  14. Lai, D.G., et al.: . Phys. Rev. A 102, 011502 (2020). (Rapid Communication)

    Article  ADS  Google Scholar 

  15. Lai, D.G., et al.: . Phys. Rev. Lett. 129, 063602 (2022)

    Article  ADS  Google Scholar 

  16. Chen, Y.H., et al.: . Phys. Rev. Lett. 126, 023602 (2021)

    Article  ADS  Google Scholar 

  17. Chen, Y.H., et al.: . Phys. Rev. Appl. 18, 024076 (2022)

    Article  ADS  Google Scholar 

  18. Qin, W., et al.: . Phys. Rev. Lett 127, 093602 (2021)

    Article  ADS  Google Scholar 

  19. Qin, W., et al.: . Phys. Rev. Lett. 129, 123602 (2022)

    Article  ADS  Google Scholar 

  20. Tao, X., et al.: . npj Quantum Information 5(1), 1–8 (2019)

    Article  MathSciNet  Google Scholar 

  21. Hollenhorst, J.N.: . Phys. Rev. D 19, 1669 (1979)

    Article  ADS  Google Scholar 

  22. Huang, X.M.H., et al.: . Nature (London) 421, 496 (2003)

    Article  ADS  Google Scholar 

  23. Zheng, L., et al.: . Int. J. Theor. Phys. 59, 824 (2020)

    Article  Google Scholar 

  24. Bergmann, M., van Loock, P.: . Phys. Rev. A 94, 042332 (2016)

    Article  ADS  Google Scholar 

  25. Lund, A.P., Ralph, T.C., Haselgrove, H.L.: . Phys. Rev. Lett. 100, 030503 (2008)

    Article  ADS  Google Scholar 

  26. Gilchrist, A., et al.: . J. Opt. B 6, S828 (2004)

    Article  Google Scholar 

  27. Cirio, M., Debnath, K., Lambert, N., Nori, F.: . Phys. Rev. Lett. 119, 053601 (2017)

    Article  ADS  Google Scholar 

  28. Huang, J., Liu, Y.H., Huang, J.F., Liao, J.Q.: . Phys. Rev. A 101, 043841 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  29. Adesso, G., Serafini, A., Illuminati, F.: . Phys. Rev. A 70, 022318 (2004)

    Article  ADS  Google Scholar 

  30. Milman, P., et al.: . The European Physical Journal D - Atomic, Molecular Optical and Plasma Physics 32, 233 (2005)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (under Grant No.11647102) and the Fundamental Research Funds for the Universities (J2020117).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Shi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Since the unitary evolution operator U(t) is obtained by the equation of motion iU(t) = H(t)U(t), with the 9-Lie algebras S,

$$ \begin{array}{@{}rcl@{}} S&=& \{|-\rangle\langle-|b,|-\rangle\langle-|b,|+\rangle\langle+|b^{+},|-\rangle\langle-|b^{+},\\ &&|+\rangle\langle+|,|-\rangle\langle-|,b,b^{+}, \textit{I}\}, \end{array} $$
(16)

U(t) can be written as

$$ \begin{array}{@{}rcl@{}} U(t)&=&e^{f_{1}|-\rangle\langle-|b}e^{f_{2}|-\rangle\langle-|b}e^{f_{3}|+\rangle\langle+|b^{+}}e^{f_{4}|-\rangle\langle-|b^{+}}\\ &&e^{f_{5}|+\rangle\langle+|}e^{f_{6}|-\rangle\langle-|}e^{f_{7}b}e^{f_{8}b^{+}}e^{f_{9}}, \end{array} $$
(17)

where

$$ \begin{array}{@{}rcl@{}} f_{1}&=& \frac{g\alpha_{+}}{2\delta}(e^{-i\delta t}-1)\\f_{2}&=& \frac{g\alpha_{-}}{2\delta}(e^{-i\delta t}-1)\\ f_{3}&=& -\frac{g\alpha_{+}}{2\delta}(e^{i\delta t}-1)\\ f_{4}&=& -\frac{g\alpha_{-}}{2\delta}(e^{i\delta t}-1)\\ f_{5}&=& i\frac{g^{2}\alpha_{+}\xi t}{4\delta}+\frac{g^{2}\alpha_{+}\xi}{4\delta^{2}}(e^{-i\delta t}-1) \end{array} $$
$$ \begin{array}{@{}rcl@{}} &&+i\frac{g^{2}\alpha_{+}t}{4\delta}(\xi+\alpha_{+})-\frac{g^{2}\alpha_{+}t}{4\delta^{2}}(e^{i\delta t}-1)\\ f_{6}&=& i\frac{g^{2}\alpha_{-}\xi t}{4\delta}+\frac{g^{2}\alpha_{-}\xi}{4\delta^{2}}(e^{-i\delta t}-1)\\ &&+i\frac{g^{2}\alpha_{-}t}{4\delta}(\xi+\alpha_{-})-\frac{g^{2}\alpha_{-}t}{4\delta^{2}}(e^{i\delta t}-1)\\ f_{7}&=& \frac{g\xi}{2\delta}(e^{-i\delta t}-1)\\ f_{8}&=& -\frac{g\xi}{2\delta}(e^{i\delta t}-1)\\ f_{9}&=& 0. \end{array} $$
(18)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Zheng, L., Liu, Y. et al. Macroscopic Entangled Cat State in Cavity Optomechanics. Int J Theor Phys 62, 74 (2023). https://doi.org/10.1007/s10773-023-05310-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05310-2

Keywords

Navigation