Skip to main content
Log in

Property of Many-Body Localization in Heisenberg Ising Chain Under Periodic Driving

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We study the property of the many-body localization in Heisenberg Ising Chain model with periodic driving by using the method of matrix exact diagonalization. We consider a driving protocol in which the system’s Hamiltonian is periodically switched between two operators. The first segment is a disordered Ising system, and acts for time T0; It is worth noting that the Hamiltonian of the second part is an operator dependent on time, and acts for time T1, so the driving period is T = T0 + T1. We choose excited state fidelity to observe the phase transition between the localized phase and the ergodic phase of the system, which reflects the property of many-body localization in Heisenberg Ising Chains under periodic driving. Through the study, we find that when the disorder strength h is small, the system is in the ergodic phase, periodic driving can cause the occurrence of a transition from the ergodic phase to the localized phase, while the system is in the localized phase with a large disorder strength h, the transition from the localized phase to the ergodic phase will occur under the periodic driving. For these two cases, they all show that there is a critical driving period Tc, when the driving period is greater than Tc, the system will have a phase transition, meanwhile, Tc decreases with the increase of driving strength. Furthermore, we also get that the system size and disorder strength also effect the critical point of the driving period. The critical point decreases as the strength of disorder increases and decreases with the increase of the system size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated during and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Anderson, P.W.: Absence of diffusion in certain random lattices. Phys. Rev. Lett. 109, 1492 (1958)

    ADS  Google Scholar 

  2. Abrahams, E.: 50 Years of Anderson localization World Scientific Publishing (2010)

  3. Stolz, G.: In Entropy and the Quantum II, edited by R. Sims and D. Ueltschi, American mathematical society (2010)

  4. Anderson, P.W., Licciardello, D.C., Ramakrishnan, T.V.: Scaling theory of localization: absence of quantum diffusion in two dimensions. Phys. Rev. Lett. 42, 673 (1979)

    Article  ADS  Google Scholar 

  5. Basko, D.M., Aleiner, I.L., Altshuler, B.L.: Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states. Ann. Phys. (Amsterdam) 321, 1126 (2006)

    Article  ADS  MATH  Google Scholar 

  6. Pal, A., Huse, D.A.: Many-body localization phase transition. Phys. Rev. B 82, 174411 (2010)

    Article  ADS  Google Scholar 

  7. Khemani, V., Lim, S.P., Sheng, D.N., Huse, D.A.: Critical properties of the many-body localization transition. Phys. Rev. X 7, 021013 (2017)

    Google Scholar 

  8. Nandkishore, R., Huse, D.A.: Many-body localization and thermalization in quantum statistical mechanics. Annu. Rev. of Con. Matt. Phys. 6, 15–38 (2015)

    Article  ADS  Google Scholar 

  9. Strek, W., Cichy, B., Radosinski, L., Gluchowski, P., Marciniak, L., Lukaszewicz, M., Hreniak, D.: Laser-induced white-light emission from graphene ceramics-opening a band gap in graphene, . Light Sci. Appl. 4, e237 (2015)

    Article  ADS  Google Scholar 

  10. Rao, W-J: Machine learning the many-body localization transition in random spin systems. J. Phys. 30, 395902 (2018)

    Google Scholar 

  11. Etezadi, D., John, B.W. IV, Ruggeri, F.S., Dietler, G., Lashuel, H.A., Altug, H.: Nanoplasmonic mid-infrared biosensor for in vitro protein secondary structure detection. Light Sci. Appl. 6, e17029 (2017)

    Article  ADS  Google Scholar 

  12. Altman, E.: Many-body localization and quantum thermalization. Nature Phys. 14, 979–983 (2018)

    Article  ADS  Google Scholar 

  13. Luitz, D.J., Laflorencie, N., Alet, F.: Many-body localization edge in the random-field Heisenberg chain. Phys. Rev. B 91(R), 081103 (2015)

    Article  ADS  Google Scholar 

  14. Yurui, Q.U., Li, Q., Cai, L.U., Pan, M., Ghosh, P., Kaikai, D.U., Qiu, M.: Thermal camouflage based on the phase-changing material GST. Light Sci. Appl. 7, 26 (2018)

    Article  Google Scholar 

  15. Dmitry, A.A., Ehud, A., Immanuel, B., Maksym, S.: Many-body localization, thermalization, and entanglement. Rev. Mod. Phys. 91, 021001 (2019)

    Article  MathSciNet  Google Scholar 

  16. Monthus, C.: Many-body-localization transition: sensitivity to twisted boundary conditions. J. Phys. A : Math. Theor. 50, 095002 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Rispoli, M., Lukin, A., Schittko, R., et al: Quantum critical behaviour at the many-body localization transition. Nature 573, 385–389 (2019)

    Article  ADS  Google Scholar 

  18. Rigol, M., Dunjko, V., Olshanii, M.: Thermalization and its mechanism for generic isolated quantum systems. Nature (London) 452, 854 (2008)

    Article  ADS  Google Scholar 

  19. Pal, A., Huse, D.A.: Many-body localization phase transition. Phys. Rev. B 82, 174411 (2010)

    Article  ADS  Google Scholar 

  20. Ponte, P, Papic, Z., Huveneers, F., Abain, D.A.: Many-body localization in periodically driven system. Phys. Rev. Lett. 114, 140401 (2015)

    Article  ADS  Google Scholar 

  21. Ponte, P., Chandran, A., Papic, Z., Abanin, D.A.: Periodically driven ergodic and many-body localized quantunm system. Ann. Phys. 196–204, 353 (2015)

    MATH  Google Scholar 

  22. Bairey, E., Refael, G., Netanel, H.: Lindner driving induced many-body localization. Phys. Rev. B 96(R), 020201 (2017)

    Article  ADS  Google Scholar 

  23. Biasco, S, Beere, H.E., Ritchie, D.A., Li, L., Davies, G.A., Linfield, E.H., Vitiello, M.S.: Frequency-tunable continuous-wave random lasers at terahertz frequencies. Light Sci. Appl. 8, 43 (2019)

    Article  ADS  Google Scholar 

  24. Thimothee, T., Franrois, H., Markus, M., Wojciech, D.R.: Many-body delocalization as a quantum avalanche. Phys. Rev. Lett. 121, 140601 (2018)

    Article  ADS  Google Scholar 

  25. Rubin, S., Hong, B., Fainman, Y.: Subnanometer imaging and controlled dynamical patterning of thermocapillary driven deformation of thin liquid films. Light Sci. Appl. 8, 77 (2019)

    Article  ADS  Google Scholar 

  26. Grifoni, M., Hanggi, P.: Driven quantum tunneling. Phys. Rep. 304, 229–354 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  27. D’Alessio, L., Rigol, M.: Long-time behavior of isolated periodically driven interacting lattice systems. Phys. Rev. X 4, 041048 (2014)

    Google Scholar 

  28. Petsch, S., Schuhladen, S., Dreesen, L., Zappe, H.: The engineered eyeball, a tunable imaging system using soft-matter micro-optics. Light Sci. Appl. 5, e16068 (2016)

    Article  ADS  Google Scholar 

  29. Bukov, M., D’Alessio, L., Polkovnikov, A.: Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to floquet engineering. Adv. Phys. 64 (2015)

  30. Dutt, A., Minkov, M., Williamson, IA, Fan, S.: Higher-order topological insulators in synthetic dimensions. Light Sci. Appl. 9, 131 (2020)

    Article  ADS  Google Scholar 

  31. Sajeed, S, Jennewein, T: Observing quantum coherence from photons scattered in free-space. Light: Science & Applications 10, 121 (2021)

    Article  ADS  Google Scholar 

  32. Chen, L, Lin, W, Wang, H, Li, J, Kang, J: Reversing abnormal hole localization in high-Al-content AlGaN quantum well to enhance deep ultraviolet emission by regulating the orbital state coupling. Light: Science & Applications 9, 104 (2020)

    Article  ADS  Google Scholar 

  33. Hu, T.T., Xue, K., Li, X.D., Zhang, Y., Ren, H.: Fidelity of the diagonal ensemble signals the many-body localization transition. Phys. Rev. E 94, 052119 (2016)

    Article  ADS  Google Scholar 

  34. Hu, T.T., Xue, K., Li, X., et al: Excited-state fidelity as a signal for the many-body localization transition in a disordered Ising chain. Sci. Rep. 7, 577 (2017)

    Article  ADS  Google Scholar 

  35. Zheng, Y., Yang, J., Shen, Z., et al.: Optically induced transparency in a micro-cavity. Light: Science & Applications 5, 16072 (2016)

    Article  Google Scholar 

  36. Chen, L., Lei, J., Romero, J.: Quantum digital spiral imaging. Light: Science & Applications 3, 153 (2014)

    Article  ADS  Google Scholar 

  37. De Grandi, C., Polkovnikov, A., Sandvik, A.W.: . Phys. Rev. B 84, 224303 (2011)

    Article  ADS  Google Scholar 

  38. Mukherjee, V., Polkovnikov, A., Dutta, A.: . Phys. Rev. B 83, 075118 (2011)

    Article  ADS  Google Scholar 

  39. Lai, Y., Lan, Y., Lu, T.: Strong light-matter interaction in ZnO microcavities. Light: Science & Applications 2, 76 (2013)

    Article  ADS  Google Scholar 

  40. Saeed, S., de Weerd, C., Stallinga, P., et al.: Carrier multiplication in germanium nanocrystals. Light: Science & Applications 4, 251 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the NSF of China (Grant No. 62175233) and by the Plan for Scientific and Technological Development of Jilin Province (No. 20220101111JC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taotao Hu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, S., Hu, T., Ren, H. et al. Property of Many-Body Localization in Heisenberg Ising Chain Under Periodic Driving. Int J Theor Phys 62, 56 (2023). https://doi.org/10.1007/s10773-023-05309-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05309-9

Keywords

Navigation