Skip to main content
Log in

Probabilistic Quantum Teleportation via 3-Qubit Non-maximally Entangled GHZ State by Repeated Generalized Measurements

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We propose a scheme of repeated generalized Bell state measurement (GBSM) for probabilistic quantum teleportation of single qubit state of a particle (say, 0) using 3-qubit non-maximally entangled (NME) GHZ state as a quantum channel. Alice keeps two qubits (say, 1 and 2) of the 3-qubit resource and the third qubit (say, 3) goes to Bob. Initially, Alice performs GBSM on qubits 0 and 1 which may lead to either success or failure. On obtaining success, Alice performs projective measurement on qubit 2 in the eigen basis of σx. Both these measurement outcomes are communicated to Bob classically, which helps him to perform a suitable unitary transformation on qubit 3 to recover the information state. On the other hand, if failure is obtained, the next attempt of GBSM is performed on qubits 0 and 2. This process of repeating GBSM on alternate pair of qubits may continue until perfect teleportation with unit fidelity is achieved. We have obtained analytical expressions for success probability up to three repetitions of GBSM. The success probability is shown to be a polynomial function of bipartite concurrence of the NME resource. The variation of success probability with the bipartite concurrence has been plotted which shows the convergence of success probability to unity with GBSM repetitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: . Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  Google Scholar 

  2. Bouwmeester, D., Pan, J.-W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: . Nature 390(6660), 575 (1997)

    Article  ADS  Google Scholar 

  3. Prakash, H., Chandra, N., Prakash, R., Dixit, A.: . Mod. Phys. Lett. B 21(29), 2019–2023 (2007)

    Article  ADS  Google Scholar 

  4. Karlsson, A., Bourennane, M.: . Phys. Rev. A 58(6), 4394 (1998)

    Article  ADS  Google Scholar 

  5. Prakash, H., Chandra, N., Prakash, R., Shivani: Int. J. Quantum Inf. 6(05), 1077–1092 (2008)

    Article  Google Scholar 

  6. Prakash, H.: . Verma, V. 11(6), 1951–1959 (2012)

    Google Scholar 

  7. Wootters, W.K.: . Phys. Rev. Lett. 80(10), 2245 (1998)

    Article  ADS  Google Scholar 

  8. Agrawal, P., Pati, A.K.: . Phys. Lett. A 305(1), 12–17 (2002)

    Article  ADS  Google Scholar 

  9. Pati, A.K., Agrawal, P.: . J. Opt. B: Quantum Semiclassical Opt. 6(8), 844 (2004)

    Article  ADS  Google Scholar 

  10. Li, W.-L., Li, C.-F., Guo, G.-C.: . Phys. Rev. A 61, 034301 (2000)

    Article  ADS  Google Scholar 

  11. Shi-Biao, Z.: . Chin. Phys. Lett. 23(9), 2356 (2006)

    Article  ADS  Google Scholar 

  12. Yan, F., Yan, T.: . Chin. Sci. Bull. 55(10), 902–906 (2010)

    Article  Google Scholar 

  13. Nie, Y.-Y., Hong, Z.-H., Huang, Y.-B., Yi, X.-J., Li, S.-S.: . Int. J. Theor. Phys. 48(5), 1485–1490 (2009)

    Article  Google Scholar 

  14. Xu, H.-F., Zhang, M.-Y., Guo, H.-Y., Yang, J.: . Int. J. Theor. Phys. 49(9), 2089–2094 (2010)

    Article  Google Scholar 

  15. Ting, G., Feng-Li, Y., Zhi-Xi, W.: . Chin. Phys. 14(5), 893–897 (2005)

    Article  Google Scholar 

  16. Shi, B.-S., Tomita, A.: . Phys. Lett. A 296(4-5), 161–164 (2002)

    Article  ADS  Google Scholar 

  17. Joo, J., Park, Y.-J., Oh, S., Kim, J.: . New J. Phys. 5(1), 136 (2003)

    Article  ADS  Google Scholar 

  18. Cao, Z.-L., Yang, M.: . Physica A: Stat. Mech. Appl. 337(1-2), 132–140 (2004)

    Article  ADS  Google Scholar 

  19. van Enk, S.J., Hirota, O.: . Phys. Rev. A 64, 022313 (2001)

    Article  ADS  Google Scholar 

  20. Prakash, H., Chandra, N., Prakash, R., et al: . Phys. Rev. A 75(4), 044305 (2007)

    Article  ADS  Google Scholar 

  21. Mishra, M.K., Prakash, H.: . Ann. Phys. 360, 462–476 (2015)

    Article  Google Scholar 

  22. Pandey, R.K., Prakash, R., Prakash, H.: . Int. J. Theor. Phys. 58(10), 3342–3351 (2019)

    Article  Google Scholar 

  23. Prakash, R., Pandey, R.K., Prakash, H.: . Int. J. Theor. Phys. 58(4), 1227–1236 (2019)

    Article  Google Scholar 

  24. Pandey, R.K., Prakash, R., Prakash, H.: . Quantum Inf. Process 20(10), 1–26 (2021)

    Article  Google Scholar 

  25. Javed, S., Prakash, R., Prakash, H.: . Int. J. Quantum Inf. 19(02), 2150015 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

SJ, RKP, PSY dedicate this paper in the memory of Prof. Ranjana Prakash and Prof. Hari Prakash. May their soul rest in peace. We are thankful to Prof. N Chandra, Dr. V Verma and Dr. O N Verma for valuable suggestions. SJ is thankful to UGC scheme of Maulana Azad National Fellowship for providing financial support. RKP is thankful to UGC for providing financial assistance under CSIR-UGC SRF fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shamiya Javed.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javed, S., Pandey, R.K., Yadav, P.S. et al. Probabilistic Quantum Teleportation via 3-Qubit Non-maximally Entangled GHZ State by Repeated Generalized Measurements. Int J Theor Phys 62, 11 (2023). https://doi.org/10.1007/s10773-022-05266-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05266-9

Keywords

Navigation