Skip to main content
Log in

Quantum Dynamics of a f-deformed Opto-mechanical System

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Based on the f-oscillator formalism, we introduce a nonlinear optomechanical framework which is constructed from the standard optomechanical system by deforming the single-mode photonic-field operators. Such a generalized optomechanical system describes an intensity-dependent interaction of a mechanical oscillator with a single-mode electromagnetic field. To gain insight into the effectiveness of the non-linearization processes, we investigate the role of the involving parameters especially the nonlinearity function that controls the entanglement and statistical properties of the photon-phonon state was considered. Thus, we apply the linear entropy measure and the Wigner function to quantify the entanglement and non-classical properties of this composite system and the condition in which quantum entanglement and negativity of the Wigner function can be enhanced and maximized has been identified. Thus, depending on an election of the nonlinearity function, one can observe different non-classical effects. These trends are compared with those obtained for the standard optomechanical system including photon-phonon interaction, too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The subtitles ‘op.’ and ‘m’ are related to the optical and mechanical modes, respectively.

References

  1. Jaynes, E.T., Cummings, F.W.: Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE. 51, 89 (1963)

    Article  Google Scholar 

  2. Gentile, T.T., Hughey, B.J., Klepnner, D.: Nonlinear Jaynes-Cummings model of atom-field interaction. Phys. Rev. A 40, 5103 (1989)

    Article  ADS  Google Scholar 

  3. Moya-Cessa, H., Buzek, V., Kim, M.S., Knight, P.L.: Intrinsic decoherence in the atom-field interaction. Phys. Rev. A 48, 3900 (1993)

    Article  ADS  Google Scholar 

  4. Joshi, A., Xiao, M.: Atomic-coherence effect on the Jaynes-Cummings model with atomic motion. J. Opt. Soc. Am. B 21, 1685 (2004)

    Article  ADS  Google Scholar 

  5. Eberly, J.H., Narozhny, N.B., Sanchez-Mongragon, J.J.: Periodic spontaneous collapse and revival in a simple quantum model. Phys. Rev. Lett. 44, 1323 (1980)

    Article  ADS  MATH  Google Scholar 

  6. Rempe, G., Walther, H.: Observation of quantum collapse and revival in a one-atom maser. Phys. Rev. Lett. 58, 353 (1987)

    Article  ADS  Google Scholar 

  7. Mahdifar, A., Jamshidi Farsani, M., Bagheri Harouni, M.: Curvature effects on the interaction of nonlinear sphere coherent states with a three-level atom. J. Opt. Soc. Am. B 30, 2952 (2013)

    Article  ADS  Google Scholar 

  8. Buck, B., Sukumar, C.V.: Stark and Kerr effects on the dynamics of moving N-level atomic system. Phys. Lett. A 81, 132 (1981)

    Article  ADS  Google Scholar 

  9. Buzek, V.: Jaynes-cummings model with intensity-dependent coupling interacting with Holstein-Primakoff SU(1,1) coherent state. Phys. Rev. A 39, 3196 (1989)

    Article  ADS  Google Scholar 

  10. Crnugelj, J., Martinis, M., Mikuta-Martinis, V.: Properties of a deformed Jaynes-Cummings model. Phys. Rev. A 50, 1785 (1994)

    Article  ADS  MATH  Google Scholar 

  11. Cordero, S., Recamier, J.: The f-deformed Jaynes-Cummings model and its nonlinear coherent states. J. Phys. B: At. Mol. Opt. Phys. 44, 135502 (2011)

    Article  ADS  Google Scholar 

  12. Tavis, M., Cummings, F.W.: Exact solution for an N-molecule-radiatin-field-Hamiltonian. Phys. Rev. 170, 379 (1968)

    Article  ADS  Google Scholar 

  13. Agarwal, G.S., Puri, R.R.: Collapse and revival phenomenon in the evolution of a resonant field in a Kerr-like medium. Phys. Rev. A 39, 2969 (1989)

    Article  ADS  Google Scholar 

  14. Gora, P., Jedrzejek, C.: Nonlinear Jaynes-Cummings model. Phys. Rev. A 45, 6816 (1992)

    Article  ADS  Google Scholar 

  15. Xie, R.-H., Gong-ou, X., Liu, D.-H.: Study of squeezing propertiesnin a two-level system. Aust. J. Phys. 48, 907 (1995)

    Article  ADS  Google Scholar 

  16. Werner, M.J., Risken, H.: Quantum optical electromagnetic field and Rabi oscillation in time-varying medium. Quantum Opt. 3, 185 (1991)

    Article  ADS  Google Scholar 

  17. Sivakumar, S.: Nonlinear Jaynes-Cummings model of Atom-Field interaction. Int. J. Theo. Phys. 43, 2405 (2004)

    Article  MATH  Google Scholar 

  18. Walentowitz, S., Vogel, W.: Quantum-mechanical counterpart of nonlinear optics. Phys. Rev. A 55, 4438 (1997)

    Article  ADS  Google Scholar 

  19. de Matos, R.L., Vogel, W.: Engineering the Hamiltonian of a trapped atom. Phys. Rev. A 58, R1661 (1998)

    Article  ADS  Google Scholar 

  20. Bagheri Harouni, M., Roknizadeh, R., Naderi, M.H.: Q-deformed description of excitons and associated physical results. J. Phys. B: At. Mol. Opt. Phys. 42, 095501 (2009)

    Article  ADS  Google Scholar 

  21. Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Phys. Rev. Mod 86, 1391 (2014)

    Article  ADS  Google Scholar 

  22. Weiss, T., Nunnenkamp, A.: Fast cooling in dispersively and dissipatively coupled optomechanics. Phys. Rev. A. 88, 023850 (2013)

    Article  ADS  Google Scholar 

  23. Barzanjeh, S., Vitali, D., Tombesi, P., Milburn, G.: Entangling optical and microwave cavity modes by means of a nanomechanical resonator. Phys. Rev. A. 84, 042342 (2011)

    Article  ADS  Google Scholar 

  24. Li, H.K., Ren, X.X., Liu, Y.C., Xiao, Y.F.: Optomechanical electromagnetically induced transparency. Phys. Rev. A. 88, 053850 (2013)

    Article  ADS  Google Scholar 

  25. Liao, J.Q., Nori, F.: Photon blockade in quadratically coupled optomechanical systems, vol. 88, p 023853 (2013)

  26. Agarwal, G.S., Tara, K.: Nonclassical properties of states generated by the excitations on a coherent state, Phys. Rev. A 43, 492 (1991)

    Article  Google Scholar 

  27. Wang, X.G.: Two-mode nonlinear coherent states. Opt. Commun. 178, 365 (2000)

    Article  ADS  Google Scholar 

  28. Liang, X., Guo, Q., Yuan, W.: Nonclassical Properties of an opto-mechanical system initially prepared in N-headed cat state and number state. Int. J. Theo. Phys. 58, 58 (2019)

    Article  MATH  Google Scholar 

  29. Hassani Nadiki, M., Tavassolya, M.K., Yazdanpanah, N.: A trapped ion in an optomechanical system: entanglement dynamics. Eur. Phys. J. D 72, 110 (2018)

    Article  ADS  Google Scholar 

  30. Buck, B., Sukumar, C.V.: Exactly soluble model of atom-phonon coupling showing periodic decay and revival. Phys. Lett. A 81, 132 (1981)

    Article  ADS  Google Scholar 

  31. Khan, R, Massel, F., Heikkila, T.T.: Cross-Kerr nonlinearity in optomechanical systems, vol. 91 (2015)

  32. De los Santos-Sanchez, O., Recamier, J.: The f-deformed Jaynes-Cummings model and its nonlinear coherent states. J. Phys. B: At. Mol. Opt. Phys. 45, 015502 (2012)

    Article  ADS  Google Scholar 

  33. de Matos Filho, R.L., Vogel, W.: Nonlinear coherent states. Phys. Rev. A 54, 4560 (1996)

    Article  ADS  Google Scholar 

  34. Huerta Alderete, C., Rodriguez-Lara, B.M.: Quantum simulation of driven para-Bose oscillators. Phys. Rev. A 95, 013820 (2017)

    Article  ADS  Google Scholar 

  35. Huerta Alderete, C., Villanueva Vergara, L., Rodríguez-Lara, B.M.: Nonclassical and semiclassical para-Bose states. Phys. Rev. A 95, 043835 (2017)

    Article  ADS  Google Scholar 

  36. Huerta Alderete, C., Rodriguez-Lara, B.M.: Simulating para-Fermi oscillators. Sci. Rep. 8, 11572 (2018)

    Article  ADS  Google Scholar 

  37. Mojaveri, B., Dehghani, A., Jafarzadeh, R.: Nonlinear coherent states of the para-Bose oscillator and their non-classical features. Euro. Phys. J. Plus 133, 346 (2018)

    Article  MATH  Google Scholar 

  38. Dehghani, A., Mojaveri, B.: Generalized su(2) coherent states for the Landau levels and their nonclassical properties. Euro. Phys. J. D 67, 179 (2013)

    Article  ADS  Google Scholar 

  39. Mojaveri, B., Dehghani, A.: Even and odd Wigner negative binomial states: Nonclassical properties. Mod. Phys. Lett. A 30, 1550198 (2015)

    Article  ADS  MATH  Google Scholar 

  40. Dehghani, A., Mojaveri, B., Shirin, S., Faseghandis, S.A.: Parity deformed Jaynes-Cummings model: Robust maximally entangled states. Sci. Rep. 6, 38069 (2016)

    Article  ADS  Google Scholar 

  41. Sargolzaeipor, S., Hasanabadi, H., Chung, W.S.: Superstatistics of two electrons quantum dot. Euro. Phys. J. Plus 132, 128 (2017)

    Google Scholar 

  42. Mojaveri, B., Dehghani, A., Ahmadi, Z., Amiri, S.: Interaction of a para-Bose state with two two-level atoms: control of dissipation by a local classical field. Euro. Phys. J. Plus 135, 227 (2020)

    Article  Google Scholar 

  43. Mojaveri, B., Dehghani, A., Ahmadi, Z.: A quantum correlated heat engine based on the parity-deformed Jaynes-Cummings model: achieving the classical Carnot efficiency by a local classical field. Phys. Scr. 96, 115102 (2021)

    Article  Google Scholar 

  44. Dehghani, A., Mojaveri, B., Jafarzadeh Bahrbeig, R.: Entanglement transfer in a noisy cavity network with parity-deformed radiation fields. J. Opt. Soc. Am. B 36, 1858 (2019)

    Article  ADS  MATH  Google Scholar 

  45. Dehghani, A., Mojaveri, B., Jafarzadeh Bahrbeig, R.: Two-qutrit entangled f-coherent states. Rep. Math. Phys. 87, 111 (2021)

    Article  MATH  Google Scholar 

  46. Lee, S.Y., Lee, C.W., Nha, H., kaszlikowski, D.: Quantum phase estimation using a multi-headed cat state. J. Opt. Soc. Am. B 32, 1186 (2015)

    Article  ADS  Google Scholar 

  47. Suzuki, M.: On the Convergence of Exponential Operators- the Zassenhaus Formula, BCH Formula and Systematic Approximants. Commun. Math. Phys. 57, 193 (1977)

    Article  ADS  MATH  Google Scholar 

  48. Scholz, D., Weyrauch, M.: A note on the Zassenhaus product formula. J. Math. Phys. 47, 033505 (2006)

    Article  ADS  MATH  Google Scholar 

  49. Cahill, K.E., Glauber, R.J.: Ordered Expansions in Boson Amplitude Operators. Phys Rev. 177(5), 1857 (1969)

    Article  ADS  Google Scholar 

  50. Wei, T.-C., Nemoto, K., Goldbart, P.M., Kwiat, P.G., Munro, W.J., Verstraete, F.: Maximal entanglement versus entropy for mixed quantum states. Phys. Rev. A 67, 022110 (2003)

    Article  ADS  Google Scholar 

  51. Buscemi, F., Bordone, P., Bertoni, A.: Linear entropy as an entanglement measure in two-fermion systems. Phys. Rev. A 75, 032301 (2007)

    Article  ADS  Google Scholar 

  52. Zurek, W.H., Habib, S., Paz, J.P.: Coherent states via decoherence. Phys. Rev. Lett. 70, 1187 (1993)

    Article  ADS  Google Scholar 

  53. Vlastakis, B., Kirchmair, G., Leghtas, Z., Nigg, S.E., Frunzio, L., Girvin, S.M., Mirrahimi, M., Devoret, M. H., Schoelkopf, R.J.: Deterministically encoding quantum information using 100-photon schrodinger cat states. Science. 342, 607 (2013)

    Article  ADS  MATH  Google Scholar 

  54. Scully, M.O., Zubairy, M.S.: Quantum optics. Cambridge University Press, Cambridge (1997)

  55. Bagheri Harouni, M., Roknizadeh, R., Naderi, M.H.: Spatial confinement effects on a quantum harmonic oscillator: nonlinear coherent state approach. J. Phys. A: Math. Theor. 42, 045403 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Dehghani.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehghani, A., Mojaveri, B. & Aryaie, M. Quantum Dynamics of a f-deformed Opto-mechanical System. Int J Theor Phys 62, 5 (2023). https://doi.org/10.1007/s10773-022-05264-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05264-x

Keywords

Navigation