Skip to main content
Log in

Influence of Cross-Sectional Uncertainty on Sensitivity Studies of DUNE and T2HK Experiments

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The ultimate objectives of ongoing and upcoming neutrino experiments are the precise measurement of neutrino mixing parameters and the confirmation of the mass hierarchy. The systematic inaccuracy in the cross-section models introduces inaccuracy in the neutrino mixing parameters estimation. It is important to secure a large decrease of uncertainties, particularly those related to cross-section, neutrino-nucleus interactions, and neutrino energy reconstruction, in order to achieve these ambitious goals. In this research article, we use three alternative neutrino event generators, GENIE, NuWro, and GiBUU, to analyze the sensitivity studies of T2HK, DUNE, and combined sensitivity of DUNE, and T2HK for mass hierarchy, CP violation, and octant degeneracy caused by cross-section uncertainties. The cross-section models of these generators are separate and independent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. An, F.P., et al.: (Daya Bay). Phys. Rev. Lett. 108, 171803 (2012)

    Article  ADS  Google Scholar 

  2. An, F.P., et al.: (Daya Bay). Chin. Phys. C 37, 011001 (2013)

    Article  ADS  Google Scholar 

  3. Ahn, J.K., et al.: (RENO). Phys. Rev. Lett. 108, 191802 (2012)

    Article  ADS  Google Scholar 

  4. Engelhard, G., Grossman, Y., Nir, Y.: . JHEP 07, 029 (2007)

    Article  ADS  Google Scholar 

  5. Pascoli, S., Petcov, S.T., Riotto, A.: . Phys. Rev. D 75, 083511 (2007)

    Article  ADS  Google Scholar 

  6. Devi, R., Singh, J., Potukuchi, B.: . Ukr. J. Phys. 67, 22 (2022)

    Article  Google Scholar 

  7. Huber, P., Mezzetto, M., Schwetz, T.: . JHEP 03, 021 (2008)

    Article  ADS  Google Scholar 

  8. Coloma, P., Huber, P., Kopp, J., Winter, W.: . Phys. Rev. D 87, 033004 (2013)

    Article  ADS  Google Scholar 

  9. Harris, D.A., et al.: Neutrino scattering uncertainties and their role in long baseline oscillation experiments. arXiv preprint arXiv: 0410005 (2004)

  10. Fernandez-Martinez, E., Meloni, D.: . Phys. Lett. B 697, 477 (2011)

    Article  ADS  Google Scholar 

  11. Benhar, O., Rocco, N.: . Adv. High Energy Phys 2013, 1310,3869 (2013)

    Article  Google Scholar 

  12. Ankowski, A.M., Benhar, O., Mariani, C., Vagnoni, E.: . Phys. Rev. D 93, 113004 (2016)

    Article  ADS  Google Scholar 

  13. Katori, T., Martini, M.: . J. Phys. G 45, 013001 (2018)

    Article  ADS  Google Scholar 

  14. Andreopoulos, C., et al.: . Nucl. Instrum. Meth. A 614, 87 (2010)

    Article  ADS  Google Scholar 

  15. Golan, T., Juszczak, C., Sobczyk, J.T.: . Phys. Rev. C 86, 015505 (2012)

    Article  ADS  Google Scholar 

  16. Buss, O., Gaitanos, T., Gallmeister, K., van Hees, H., Kaskulov, M., Lalakulich, O., Larionov, A.B., Leitner, T., Weil, J., Mosel, U.: . Phys. Rept. 512, 1 (2012)

    Article  ADS  Google Scholar 

  17. Brun, R., Rademakers, F.: . Nucl. Instrum. Meth. A 389, 81 (1997)

    Article  ADS  Google Scholar 

  18. Drakoulakos, D., et al.: Proposal to perform a high-statistics neutrino scattering experiment using a fine-grained detector. arXiv preprint arXiv: 0405002 (2004)

  19. Adamson, P., et al.: (MINOS). Phys. Rev. D 77, 072002 (2008)

    Article  ADS  Google Scholar 

  20. Chen, H., et al.: (MicroBooNE) (2007)

  21. Ayres, D.S., et al.: NOvA proposal to build a 30 kiloton off-axis detector to study neutrino oscillations in the Fermilab NuMI Beamline. arXiv preprint arXiv: 0503053 (2004)

  22. Itow, Y., et al.: The JHF-Kamioka neutrino project. arXiv preprint arXiv: 0106019 (2001)

  23. Bodek, A., Ritchie, J.L.: Nucl. Phys. B Proc. Suppl. Phys. Rev. D 24, 1400 (1981)

    Article  ADS  Google Scholar 

  24. Llewellyn Smith, C.H.: Nucl. Phys. B Proc. Suppl. Phys. Rept. 3, 261 (1972)

    Article  ADS  Google Scholar 

  25. Bradford, R., Bodek, A., Budd, H.S., Arrington, J.: . Nucl. Phys. B Proc. Suppl. 159, 127 (2006)

    Article  ADS  Google Scholar 

  26. Rein, D., Sehgal, L.M.: . Annals Phys. 133, 79 (1981)

    Article  ADS  Google Scholar 

  27. Feynman, R.P., Kislinger, M., Ravndal, F.: . Phys. Rev. D 3, 2706 (1971)

    Article  ADS  Google Scholar 

  28. Bodek, A., Yang, U.K.: . J. Phys. G 29, 1899 (2003)

    Article  ADS  Google Scholar 

  29. Budd, H.S., Bodek, A., Arrington, J.: Modeling quasi-elastic form factors for electron and neutrino scattering. arXiv preprint arXiv: 0308005 (2003)

  30. Alberico, W.M., Bilenky, S.M., Giunti, C., Graczyk, K.M.: . Phys. Rev. C 79, 065204 (2009)

    Article  ADS  Google Scholar 

  31. Graczyk, K.M., Kiełczewska, D., Przewłocki, P., Sobczyk, J.T.: . Phys. Rev. D 80, 093001 (2009)

    Article  ADS  Google Scholar 

  32. Bodek, A., Yang, U.K.: . Nucl. Phys. B Proc. Suppl. 112, 70 (2002)

    Article  ADS  Google Scholar 

  33. Lalakulich, O., Mosel, U., Gallmeister, K.: . Phys. Rev. C 86, 054606 (2012)

    Article  ADS  Google Scholar 

  34. Gallmeister, K., Mosel, U., Weil, J.: . Phys. Rev. C 94, 035502 (2016)

    Article  ADS  Google Scholar 

  35. Bodek, A., Avvakumov, S., Bradford, R., Budd, H.S.: Modeling atmospheric neutrino interactions: duality constrained parameterization of vector and axial nucleon form factors. arXiv preprint arXiv:0708.1827 (2007)

  36. Drechsel, D., Tiator, L.: . J. Phys. G 18, 449 (1992)

    Article  ADS  Google Scholar 

  37. Rein, D., Sehgal, L.M.: . Phys. Lett. B 104, 394 (1981)

    Article  ADS  Google Scholar 

  38. Lalakulich, O., Gallmeister, K., Mosel, U., Phys, J.: . Conf. Ser. 408, 012053 (2013)

    Article  Google Scholar 

  39. Huber, P., Lindner, M., Winter, W.: . JHEP 05, 020 (2005)

    Article  ADS  Google Scholar 

  40. Huber, P., Lindner, M., Schwetz, T., Winter, W.: . JHEP 11, 044 (2009)

    Article  ADS  Google Scholar 

  41. Huber, P., Kopp, J., Lindner, M., Rolinec, M., Winter. W.: https://www.mpi-hd.mpg.de/personalhomes/globes/

  42. Abe, K., et al.: Hyper-Kamiokande Design report KEK-PREPRINT-2016-21 (2016)

  43. Singh, J., Nagu, S., Singh, J., Singh, R.B.: . Nucl. Phys. B 957, 115103 (2020)

    Article  Google Scholar 

  44. Ishitsuka, M., Kajita, T., Minakata, H., Nunokawa, H.: . Phys. Rev. D 72, 033003 (2005)

    Article  ADS  Google Scholar 

  45. Huber, P., Lindner, M., Winter, W.: . Nucl. Phys. B 645, 3 (2002)

    Article  ADS  Google Scholar 

  46. Abi, B., et al.: (DUNE). Eur. Phys. J. C 80, 978 (2020)

    Article  ADS  Google Scholar 

  47. http://home.fnal.gov/ljf26/DUNE2015CDRFluxes/

  48. Adams, C.: The long-baseline neutrino experiment: exploring fundamental symmetries of the universe. arXiv preprint arXiv: 1307.7335 (2013)

  49. Esteban, I., Gonzalez-Garcia, M.C., Hernandez-Cabezudo, A., Maltoni, M., Schwetz, T.: . JHEP 01, 106 (2019)

    Article  ADS  Google Scholar 

  50. Barger, V., Huber, P., Marfatia, D., Winter, W.: . Phys. Rev. D 76, 031301 (2007)

    Article  ADS  Google Scholar 

  51. Ohlsson, T., Zhang, H., Zhou, S.: . Phys. Rev. D 87, 053006 (2013)

    Article  ADS  Google Scholar 

  52. Barger, V., Bhattacharya, A., Chatterjee, A., Gandhi, R., Marfatia, D., Masud, M.: . Phys. Rev. D 89, 011302 (2014)

    Article  ADS  Google Scholar 

  53. Ballett, P., King, S.F., Pascoli, S., Prouse, N.W., Wang, T.: . Phys. Rev. D 96, 033003 (2017)

    Article  ADS  Google Scholar 

  54. Deepthi, K.N., S.C., Mohanta, R.: . New J. Phys. 17, 023035 (2015)

    Article  ADS  Google Scholar 

  55. Chakraborty, K., Deepthi, K., Goswami, S.: . Nuclear Phys. B 937, 303 (2018)

    Article  ADS  Google Scholar 

  56. Nagu, S., Singh, J., Singh, J., Singh, R.: . Nuclear Phys. B 951, 114888 (2020)

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors, Miss Ritu Devi offers most sincere gratitude to the Council of Scientific and Industrial Research (CSIR), Government of India, for the financial support in the form of Senior Research Fellowship, file no. 09/100(0205)/2018-EMR-I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritu Devi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, R., Singh, J. & Potukuchi, B. Influence of Cross-Sectional Uncertainty on Sensitivity Studies of DUNE and T2HK Experiments. Int J Theor Phys 61, 243 (2022). https://doi.org/10.1007/s10773-022-05228-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05228-1

Keywords

Navigation