Skip to main content
Log in

Composable Security Analysis for Passive Continuous-Variable Quantum Key Distribution Using Multimode Thermal Source

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Passive continuous variable quantum key distribution using multimode thermal source waives the necessity of usage of amplitude and phase modulators, thus it can effectively simplify the implementation of quantum key distribution. Compared with Gaussian modulation quantum key distribution scheme, this protocol is more cost-effective. However, the composable security of this scheme under collective attack has not been proved. In view of this, we take the composable security of the protocol under collective attack into consideration, and analyze the impact of the average photon number and mode-overlap coefficient on the performance of passive continuous variable quantum key distribution using multimode thermal source. In order to make comparison, we also calculate the asymptotic secret key rate of the passive continuous variable quantum key distribution protocol using multimode thermal source. Simulation results show that the composable secret key rate of this protocol is always lower than its asymptotic secret key rate. When the number of exchanged optical pulse signals is large enough, the composable secret key rate of the protocol approaches the asymptotic secret key rate. In addition, the composable secret key rate of this scheme can be further improved with the increase of average output photon number and mode-overlap coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pirandola, S., Andersen, U.L., Banchi, L., Berta, M., Bunandar, D., Colbeck, R., Englund, D., Gehring, T., Lupo, C., Ottaviani, C., Pereira, J.L., Razavi, M., Shamsul Shaari, J., Tomamichel, M., Usenko, V.C., Vallone, G., Villoresi, P., Wallden, P.: Advances in quantum cryptography. Adv. Opt. Photon. 12(4), 1012–1236 (2020)

    Article  Google Scholar 

  2. Xu, F., Ma, X., Zhang, Q., Lo, H.K., Pan, J.W.: Secure quantum key distribution with realistic devices. Rev. Mod. Phys. 92(2), 025002 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  3. Lo, H.K., Curty, M., Tamaki, K.: Secure quantum key distribution. Nat. Photonics 8(8), 595–604 (2014)

    Article  ADS  Google Scholar 

  4. Fang, X.T., Zeng, P., Liu, H., Zou, M., Wu, W.J., Tang, Y.L., Sheng, Y.J., Xiang, Y., Zhang, W., Li, H., Wang, Z., You, L., Li, M.J., Chen, H., Chen, Y.A., Zhang, Q., Peng, C.Z., Ma, X., Chen, T.Y., Pan, J.W.: Implementation of quantum key distribution surpassing the linear rate-transmittance bound. Nat. Photonics 14(7), 422–425 (2020)

    Article  ADS  Google Scholar 

  5. Yin, J., Li, Y.H., Liao, S.K., Yang, M., Cao, Y., Zhang, L., Ren, J.G., Cai, W.Q., Liu, W.Y., Li, S.L., Shu, R., Huang, Y.M., Deng, L., Li, L., Zhang, Q., Liu, N.L., Chen, Y.A., Lu, C.Y., Wang, X.B., Xu, F.H., Wang, J.Y., Peng, C.Z., Ekert, A.K., Pan, J.W.: Entanglement-based secure quantum cryptography over 1,120 kilometres. Nature 582(7813), 501–505 (2020)

    Article  ADS  Google Scholar 

  6. Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018)

    Article  ADS  Google Scholar 

  7. Wu, X.D., Wang, Y.J., Zhong, H., Liao, Q., Guo, Y.: Plug-and-play dual-phase-modulated continuous-variable quantum key distribution with photon subtraction. Front. Phys. 14(4), 41501 (2019)

    Article  ADS  Google Scholar 

  8. Weedbrook, C., Pirandola, S., García-Patrón, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys. 84, 621 (2012)

    Article  ADS  Google Scholar 

  9. Grosshans, F., Grangier, P.: Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88, 057902 (2002)

    Article  ADS  Google Scholar 

  10. Wu, X.D., Wang, Y.J., Huang, D., Guo, Y.: Simultaneous measurement-device-independent continuous variable quantum key distribution with realistic detector compensation. Front. Phys. 15(3), 31601 (2020)

    Article  ADS  Google Scholar 

  11. Huang, D., Lin, D., Wang, C., Liu, W., Fang, S., Peng, J., Huang, P., Zeng, G.: Continuous-variable quantum key distribution with 1 Mbps secure key rate. Opt. Express 23(13), 17511–17519 (2015)

    Article  ADS  Google Scholar 

  12. Grosshans, F., Van Assche, G., Wenger, J., Brouri, R., Cerf, N.J., Grangier, P.: Quantum key distribution using gaussian-modulated coherent states. Nature 421, 238 (2003)

    Article  ADS  Google Scholar 

  13. Zhang, Y., Li, Z., Chen, Z., Weedbrook, C., Zhao, Y., Wang, X., Huang, Y., Xu, C., Zhang, X., Wang, Z., Wang, G., Yu, S., Guo, H.: Continuous-variable QKD over 50km commercial fiber. Quantum Sci. Technol. 4, 035006 (2019)

    Article  ADS  Google Scholar 

  14. Huang, D., Huang, P., Lin, D., Zeng, G.: Long-distance continuous-variable quantum key distribution by controlling excess noise. Sci. Rep. 6(1), 19201 (2016)

    Article  ADS  Google Scholar 

  15. Leverrier, A., Grosshans, F., Grangier, P.: Finite-size analysis of a continuous-variable quantum key distribution. Phys. Rev. A 81(6), 062343 (2010)

    Article  ADS  Google Scholar 

  16. Leverrier, A.: Composable security proof for continuous-variable quantum key distribution with coherent states. Phys. Rev. Lett. 114(7), 070501 (2015)

    Article  ADS  Google Scholar 

  17. Jouguet, P., Kunz-Jacques, S., Leverrier, A., Grangier, P., Diamanti, E.: Experimental demonstration of long-distance continuous-variable quantum key distribution. Nat. Photonics 7(5), 378–381 (2013)

    Article  ADS  Google Scholar 

  18. Qi, B., Evans, P.G., Grice, W.P.: Passive state preparation in the Gaussian-modulated coherent-states quantum key distribution. Phys. Rev. A 97(1), 012317 (2018)

    Article  ADS  Google Scholar 

  19. Bai, D., Huang, P., Ma, H., Wang, T., Zeng, G.: Passive state preparation in continuous-variable measurement-device-independent quantum key distribution. J. Phys. B 52(13), 135502 (2019)

    Article  ADS  Google Scholar 

  20. Wu, X., Wang, Y., Li, S., Zhang, W., Huang, D., Guo, Y.: Security analysis of passive measurement-device-independent continuous-variable quantum key distribution with almost no public communication. Quantum Inf. Process. 18(12), 372 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  21. Wu, X., Wang, Y., Huang, D.: Passive continuous-variable quantum secret sharing using a thermal source. Phys. Rev. A 101(2), 022301 (2020)

    Article  ADS  Google Scholar 

  22. Wu, X., Wang, Y., Guo, Y., Zhong, H., Huang, D.: Passive continuous-variable quantum key distribution using a locally generated local oscillator. Phys. Rev. A 103(3), 032604 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  23. Qi, B., Gunther, H., Evans, P.G., Williams, B.P., Camacho, R.M., Peters, N.A.: Experimental passive-state preparation for continuous-variable quantum communications. Phys. Rev. Appl 13(5), 054065 (2020)

    Article  ADS  Google Scholar 

  24. Renner, R., Cirac, J.I.: De Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography. Phys. Rev. Lett. 102(11), 110504 (2009)

    Article  ADS  Google Scholar 

  25. Fossier, S., Diamanti, E., Debuisschert, T., Tualle-Brouri, R., Grangier, P.: Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers. J. Phys. B 42(11), 114014 (2009)

    Article  ADS  Google Scholar 

  26. Qi, B., Huang, L.L., Qian, L., Lo, H.K.: Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers. Phys. Rev. A 76(5), 052323 (2007)

    Article  ADS  Google Scholar 

  27. Kumar, R., Qin, H., Alléaume, R.: Coexistence of continuous variable QKD with intense DWDM classical channels. New J. Phys. 17(4), 043027 (2015)

    Article  ADS  Google Scholar 

  28. Pirandola, S., Laurenza, R., Ottaviani, C., Banchi, L.: Fundamental limits of repeaterless quantum communications. Nat. Commun. 8, 15043 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61871407, 61872390, 61801522) and the Scientific Research Initiation Fund of Fujian University of Technology, China (Grant No. GY-Z22042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Zhong.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Ruan, X., Zhong, H. et al. Composable Security Analysis for Passive Continuous-Variable Quantum Key Distribution Using Multimode Thermal Source. Int J Theor Phys 61, 241 (2022). https://doi.org/10.1007/s10773-022-05215-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05215-6

Keywords

Navigation