Skip to main content
Log in

The Correspondence Between Shadow and the Test Field in a Einstein-Euler-Heisenberg Black Hole

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Photon sphere, shadow radius and quasinormal modes of the scalar perturbation and electromagnetic perturbations, and the correspondence with shadow are investigated in the background spacetime of a Euler-Heisenberg black hole. We obtain the connection between the real parts of the QNMs and the shadow radius by the properties of the photon spheres. The QNMS are derived by the sixth-order WKB approximation method and shadow radius, respectively. And the two methods are consistent when the value of the multipole number is large. In the eikonal limit, the correspondence of the quasinormal modes under the scalar perturbation and electromagnetic perturbations to the shadow radius is also verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. The Event Horizon Telescope Collaboration et al.: First M87 event horizon telescope results. I. The shadow of the supermassive black hole. Astrophys J. Lett. 875, L1 (2019)

  2. The Event Horizon Telescope Collaboration et al.: First M87 event horizon telescope results. I. The shadow of the supermassive black hole. Astrophys J. Lett. 875, L2 (2019)

  3. The Event Horizon Telescope Collaboration et al.: First M87 event horizon telescope results. I. The shadow of the supermassive black hole. Astrophys J. Lett. 875, L3 (2019)

  4. The Event Horizon Telescope Collaboration et al.: First M87 event horizon telescope results. I. The shadow of the supermassive black hole, Astrophys J. Lett. 875, L4 (2019)

  5. Synge, J.L.: The escape of photons from gravitationally intense stars. MNRAS 463, 3 (1966)

    Google Scholar 

  6. Luminet, J.P.: Image of a spherical black hole with thin accretion disk. Astrophys A 75, 228–235 (1979)

    Google Scholar 

  7. Amarilla, L., Eiroa, E. F.: Shadow of a rotating braneworld black hole. Phys. Rev. D 85, 716-747, 6 (2012)

  8. Bardeen, J. M.: Timelike and null geodesics in the Kerr metric. Black Holes (Les Astres Occlus) (2015)

  9. Mureika, Jonas R., Varieschi, Gabriele U.: Timelike and null geodesics in the Kerr metric. Can. J. Phys. (2017)

  10. Haroon, S., Jamil, M., Jusufi, K., Lin, K., Mann, R.B.: Shadow and deflection angle of rotating black holes in perfect fluid dark matter with a cosmological constant. Phys. Rev. D 99, 4 (2019)

    Article  MathSciNet  Google Scholar 

  11. Rohta, T.: Black Hole Shadows of Charged Spinning Black Holes. Publ. Astron. Soc, Jpn (2005)

  12. Amir, M., Ghosh, S.G.: Shapes of rotating nonsingular black hole shadows. Phys. Rev. D 94, 2 (2016)

    Article  MathSciNet  Google Scholar 

  13. Takahashi, R.: Shapes and positions of black hole shadows in accretion disks and spin parameters of black holes. Astrophys J 611, 996-1004, 2 (2004)

  14. Grenzebach, A., Perlick, V.: Photon regions and shadows of Kerr-Newman-NUT black holes with a cosmological constant. Phys. Rev. D 89, 1858-1871, 12 (2014)

  15. Grenzebach, A., Perlick, V.: Photon Regions and Shadows of Accelerated Black Holes. Int. J. Mod. Phys. D (2015)

  16. Cunha, P., Herdeiro, C., Radu, E.: Shadows of Einstein-dilaton-Gauss-Bonnet black holes. Phys. Lett. B 768, 373-379, C (2016)

  17. Guo, M., Obers, N.A., Yan, H.: Observational signatures of near-extremal Kerr-like black holes in a modified gravity theory at the Event Horizon Telescope. Phys. Rev. D 98, 8 (2018)

    Article  MathSciNet  Google Scholar 

  18. Rajibul, S.: Shadows of rotating wormholes. Phys. Rev. D 98, 024044-, 2 (2018)

  19. Gyulchev, G., Nedkova, P., Tinchev, V., Yazadjiev, S.: On the shadow of rotating traversable wormholes. Eur. Phys. J. C 78, 7 (2018)

    Article  Google Scholar 

  20. Atamurotov, F., Abdujabbarov, A., Ahmedov, B.: Shadow of rotating non-Kerr black hole. Phys. Rev. D 88, 87-93, 6 (2013)

  21. Guo, M., Li, P. C.: Innermost stable circular orbit and shadow of the 4D Einstein-Gauss-Bonnet black hole. Eur. Phys. J. C 80 (2013)

  22. Abdujabbarov, A., Toshmatov, B., Ahmedov, B.: Shadow of the rotating black hole with quintessential energy in the presence of the plasma. Int. J. Mod. Phys. D (2015)

  23. Abbott, B.P., et al.: (LIGO Scientific Collaboration and Virgo Collaboration), Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116,(2016)

    Article  ADS  MathSciNet  Google Scholar 

  24. Regge, T., Wheeler, J.A.: The Math- ematical theory of black holes. Phys. Rev. D 108, 1063 (1957)

    Article  ADS  Google Scholar 

  25. Zerilli, F.J.: Gravitational field of a particle falling in a Schwarzschild geometry analyzed in tensor harmonics. Phys. Rev. D 2, 2141 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  26. Blome, H.J., Mashhoon, B.: Quasi-normal oscillations of a schwarzschild black hole. Phys. Rev. A 100, 231 (1984)

    Google Scholar 

  27. Leaver, E.W., W, E.: An analytic representation for the quasi-normal modes of Kerr black holes. Proc. R. Soc. Lond. A 402, 285 (1985)

  28. Iyer, S., Will, C.M.: Black-hole normal modes: A WKB approach. I. Foundations and application of a higher-order WKB analysis of potential-barrier scattering. Phys. Rev. D 35, 3621 (1987)

  29. Kokkotas, K.D., Schutz, B.F.: Black-hole normal modes: A WKB approach. III. The Reissner-Nordstrom black hole. Phys. Rev. D 37, 3378 (1988)

  30. Seidel, E., Iyer, S.: Black-hole normal modes: A WKB approach. IV. Kerr black holes. Phys. Rev. D 41, 374 (1990)

  31. Majumdar, B., Panchapakesan, N.: Schwarzschild black-hole normal modes using the Hill determinant. Phys. Rev. D 40, 2568 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  32. Nollert, H.P.: Quasinormal modes of Schwarzschild black holes: the determination of quasinormal frequencies with very large imaginary parts. Phys. Rev. D 47, 5253 (1993)

    Article  ADS  Google Scholar 

  33. Konoplya, R.A.: Quasinormal behavior of the D-dimensional Schwarzshild black hole and higher order WKB approach. Phys. Rev. D 68,(2003)

    Article  ADS  MathSciNet  Google Scholar 

  34. Konoplya, R.A.: On quasinormal modes of small Schwarzschild-anti-de-Sitter black hole. Phys. Rev. D 66,(2002)

    Article  ADS  MathSciNet  Google Scholar 

  35. Konoplya, R.A., Zhidenko, A., Zinhailo, A.F.: Higher order WKB formula for quasinormal modes and grey-body factors: recipes for quick and accurate calculations. Class Quant. Grav. 36,(2019)

    Article  ADS  MathSciNet  Google Scholar 

  36. Cho, H.T.: Dirac quasi-normal modes in Schwarzschild black hole spacetimes. Phys. Rev. D 68,(2003)

    Article  ADS  MathSciNet  Google Scholar 

  37. Cho, H.T., Cornell, A.S., Doukas, J., Naylor, W.: Black hole quasinormal modes using the asymptotic iteration method. Class Quant. Grav. 37,(2010)

    Article  ADS  MathSciNet  Google Scholar 

  38. Cho, H.T., Cornell, A.S., Doukas, J., Huang, T.R.: A new approach to black hole quasinormal modes: A review ofthe asymptotic iteration method. Adv. Theor. Math. Phys. 2012,(2012)

    MATH  Google Scholar 

  39. Wang, B., Lin, C.Y., Abdalla, E.: Quasinormal modes of Reissner-Nordstrom anti-de Sitter black holes. Phys. Lett. B 481, 79 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  40. Jing, J.L., Pan, Q.Y.: Quasinormal modes and second order thermodynamic phase transition for Reissner-Nordstrom black hole. Phys. Lett. B 660, 13 (2008)

    Article  ADS  Google Scholar 

  41. Chen, S.B., Jing, J.L.: Quasinormal modes of a black hole in the deformedHorava-Lifshitz gravity. Phys. Lett. B 687, 124 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  42. Matyjasek, J., Opala, M.: Quasinormal modes of black holes: The improved semianalytic approach. Phys. Rev. D 96,(2017)

    Article  ADS  Google Scholar 

  43. Cardoso, V., Lemos, J.P.S.: Quasi-normal modes of Schwarzschild anti-de Sitter black holes: electromagnetic and gravitational perturbations. Phys. Rev. D 64,(2001)

    Article  ADS  Google Scholar 

  44. Cardoso, V., Lemos, J.P.S.: Scalar, electromagnetic and Weyl perturbations of BTZ black holes: quasinormal modes. Phys. Rev. D 64,(2001)

    Article  ADS  MathSciNet  Google Scholar 

  45. Cardoso, V., Miranda, A.S., Zanchin, V.T.: Geodesic stability, Lyapunov exponents and quasinormal modes. Phys. Rev. D 79,(2009)

    Article  ADS  MathSciNet  Google Scholar 

  46. Stefanov, I.Z., Yazadjiev, S.S., Gyulchev, G.G.: Connection between black-hole quasinormal modes and lensing in the strong deflection limit. Phys. Rev. Lett. 25(104),(2010)

    Article  ADS  Google Scholar 

  47. Jusufi, K.: Connection between the shadow radius and quasinormal modes in rotating spacetimes. Phys. Rev. D 12, 101 (2020)

    MathSciNet  Google Scholar 

  48. Magos, D., Breton, N.: Thermodynamics of the Euler-Heisenberg-AdS black hole. Phys. Rev. D 102(8),(2020)

    Article  ADS  MathSciNet  Google Scholar 

  49. Amaro, D., Macas, A.: Geodesic structure of the Euler-Heisenberg static black hole. Phys. Rev. D 10, 102 (2020)

    MathSciNet  Google Scholar 

  50. Chen, D., Gao, C., Liu, X., Yu, C.: The correspondence between shadow and test field in a four-dimensional charged einsteinCgaussCbonnet black hole. Eur. Phys. J. C 8(81), 1–10 (2021)

    Google Scholar 

  51. Breton, N., Lpez, L.A.: Birefringence and quasinormal modes of the Einstein-Euler-Heisenberg black hole. Phys. Rev. D 104,(2021)

    Article  ADS  MathSciNet  Google Scholar 

  52. Toshmatov, B., Stuchlk, Z., Ahmedov, B.: Rotating black hole solutions with quintessential energy. Eur. Phys. J. Plus. 132, 98 (2017)

    Article  Google Scholar 

  53. Yajima, H., Tamaki, T.: Black hole solutions in Euler-Heisenberg theory. Phys. Rev. D 63,(2001)

    Article  ADS  MathSciNet  Google Scholar 

  54. Ruffini, R., Yuan-Bin, Wu., She-Sheng, Xue.: Einstein-Euler-Heisenberg theory and charged black holes. Phys. Rev. D 88, 085004 (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanyuan Feng.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Nie, W. The Correspondence Between Shadow and the Test Field in a Einstein-Euler-Heisenberg Black Hole. Int J Theor Phys 61, 223 (2022). https://doi.org/10.1007/s10773-022-05205-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05205-8

Keywords

Navigation