Skip to main content
Log in

Exact Solution of (2+1)-Dimensional Noncommutative Pauli Equation in a Time-Dependent Background

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, we obtain exact solutions of the time-dependent noncommutative Pauli equation with considering a constant magnetic field perpendicular to the plane through making use of both the Lewis-Riesenfeld invariant theory and the invariant-related unitary transformation formulation. Knowing that, we apply the time-dependent noncommutativity using a two-dimensional time-dependent Bopp-shift transformation. We set Lewis-Riesenfeld invariant operators then obtaining results were used to express the eigenfunctions that lead to obtaining the exact solution of the system. In addition, we have included a new concept used for the first time, which is the time-dependent Moyal product (\(\circledast\)product).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Creffield, C.E., Platero, G.: ac-driven localization in a two-electron quantum dot molecule. Phys. Rev. B 65, 113304 (2002). https://doi.org/10.1103/PhysRevB.65.113304

    Article  ADS  Google Scholar 

  2. Tang, C.S., Chu, C.S.: Coherent quantum transport in narrow constrictions in the presence of a finite-range longitudinally polarized time-dependent field. Phys. Rev. B 60, 1830 (1999). https://doi.org/10.1103/PhysRevB.60.1830

    Article  ADS  Google Scholar 

  3. Burmeister, G., Maschke, K.: Scattering by time-periodic potentials in one dimension and its influence on electronic transport. Phys. Rev. B 57, 13050 (1998). https://doi.org/10.1103/PhysRevB.57.13050

    Article  ADS  Google Scholar 

  4. Li, W., Reichl, L.E.: Transport in strongly driven heterostructures and bound-state-induced dynamic resonances. Phys. Rev. B 62, 8269 (2000). https://doi.org/10.1103/PhysRevB.62.8269

    Article  ADS  Google Scholar 

  5. Zeng, H.: Quantum-state control in optical lattices. Phys. Rev. A 57, 388 (1997). https://doi.org/10.1103/PhysRevA.57.1972

    Article  ADS  Google Scholar 

  6. Figueira de Morisson Faria, C., Dörr, M.: Time profile of harmonic generation. Phys. Rev. A 55, 3961 (1997). https://doi.org/10.1103/PhysRevA.55.3961

    Article  ADS  Google Scholar 

  7. Mal’shukov, A.G., Tang, C.S., Chu, C.S., Chao, K.A.: Spin-current generation and detection in the presence of an ac gate. Phys. Rev. B 68, 233307 (2003). https://doi.org/10.1103/PhysRevB.68.233307

    Article  ADS  Google Scholar 

  8. Governale, M., Taddei, F., Fazio, R.: Pumping spin with electrical fields. Phys. Rev. B 68, 155324 (2003). https://doi.org/10.1103/PhysRevB.68.155324

    Article  ADS  Google Scholar 

  9. Brown, L.S.: Quantum motion in a Paul trap. Phys. Rev. Lett 66, 527 (1991). https://doi.org/10.1103/PhysRevLett.66.527

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Yuen, Horace P.: Two-photon coherent states of the radiation field. Phys. Rev. A 13, 2226 (1976). https://doi.org/10.1103/PhysRevA.13.2226

    Article  ADS  Google Scholar 

  11. Lewis, H.R.: Classical and quantum systems with time-dependent harmonic-oscillator-type hamiltonians. Phys. Rev. Lett 18, 510 (1967). https://doi.org/10.1103/PhysRevLett.18.510

    Article  ADS  Google Scholar 

  12. Lewis, H.R., Riesenfeld, W.B.: An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field. J. Math. Phys 10(8), 1458 (1969). https://doi.org/10.1063/1.1664991

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Feng, M.: Complete solution of the Schrödinger equation for the time-dependent linear potential. Phys. Rev A 64, 034101 (2001). https://doi.org/10.1103/PhysRevA.64.034101

    Article  ADS  Google Scholar 

  14. Liang, M.-L., Zhang, Z.-G., Zhong, K.-S.: Quantum-classical correspondence of the time-dependent linear potential. Czech. J. Phys 54(4), 397 (2004). https://doi.org/10.1023/B:CJOP.0000020579.42018.d9

    Article  ADS  MathSciNet  Google Scholar 

  15. Pedrosa, I.A., Melo, J.L., Nogueira, E., Jr.: Linear invariants and the quantum dynamics of a nonstationary mesoscopic RLC circuit with a source. Mod. Phys. Rev. Lett. B 28, 1450212 (2014). https://doi.org/10.1142/S0217984914502121

    Article  ADS  Google Scholar 

  16. Chen, X., Ruschhaupt, A., Schmidt, S., del Campo, A., Guéry Odelin, D., Muga, J.G.: Fast optimal frictionless atom cooling in harmonic traps: shortcut to adiabaticity. Phys. Rev. Lett. 104, 063002 (2010). https://doi.org/10.1103/PhysRevLett.104.063002

    Article  ADS  Google Scholar 

  17. Lima, D.F., Andrade, F.M., Castro, L.B., et al.: On the 2D Dirac oscillator in the presence of vector and scalar potentials in the cosmic string spacetime in the context of spin and pseudospin symmetries. Eur. Phys. J. C 79, 596 (2019). https://doi.org/10.1140/epjc/s10052-019-7115-7

    Article  ADS  Google Scholar 

  18. Sek, L., Falek, M., Moumni, M.: 2D relativistic oscillators with a uniform magnetic field in anti-de Sitter space. International Journal of Modern Physics A 36(17), 2150113 (2021). https://doi.org/10.1142/S0217751X2150113X

    Article  ADS  MathSciNet  Google Scholar 

  19. Hatzinikitas, A., Smyrnakis, I.: The noncommutative harmonic oscillator in more than one dimension. J. Math. Phys. 43, 113 (2002). https://doi.org/10.1063/1.1416196

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Santos, E.S., de Melo, G.R.: The Schrödinger and pauli-dirac oscillators in noncommutative phase space. Int J Theor Phys 50, 332 (2011). https://doi.org/10.1007/s10773-010-0529-5

    Article  MATH  Google Scholar 

  21. Arjona, V., Castro, E.V., Vozmediano, M.A.H.: Collapse of Landau levels in Weyl semimetals. Phys. Rev. B 96, 081110 (R) (2017). https://doi.org/10.1103/PhysRevB.96.081110

  22. Geim, A., Novoselov, K.: The rise of graphene. Nature Mater 6, 183 (2007). https://doi.org/10.1038/nmat1849

    Article  Google Scholar 

  23. Zhang, Y., Tan, Y.-W., Stormer, H., Kim, P.: Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201 (2005). https://doi.org/10.1038/nature04235

    Article  ADS  Google Scholar 

  24. Bolotin, K., Ghahari, F., Shulman, M., et al.: Observation of the fractional quantum Hall effect in graphene. Nature 462, 196 (2009). https://doi.org/10.1038/nature08582

    Article  ADS  Google Scholar 

  25. Mikitik, G.P., Sharlai, Y.V.: The Berry phase in graphene and graphite multilayers. Low Temp. Phys. 34(10), 794 (2008). https://doi.org/10.1063/1.2981389

    Article  ADS  Google Scholar 

  26. Haouam, I.: On the noncommutative geometry in quantum mechanics. J. Phys. Stud. 24(2), 2002 (2020).https://doi.org/10.30970/jps.24.2002

  27. Das, A., Falomir, H., Gamboa, J., Méndez, F.: Non-commutative supersymmetric quantum mechanics. Phys. Lett. B 670(4–5), 407 (2009). https://doi.org/10.1016/j.physletb.2008.11.011

    Article  ADS  MathSciNet  Google Scholar 

  28. Szabo, R.J.: Quantum field theory on noncommutative spaces. Phys. Rep. 378(4), 207 (2003). https://doi.org/10.1016/S0370-1573(03)00059-0

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Haouam, I.: On the Fisk–Tait equation for spin-3/2 fermions interacting with an external magnetic field in noncommutative space-time. J. Phys. Stud. 24, 1801 (2020). https://doi.org/10.30970/jps.24.1801

    Article  Google Scholar 

  30. Martinetti, P.: Beyond the standard model with noncommutative geometry, strolling towards quantum gravity. vol. 634, p. 012001. IOP Publishing, (2015). https://doi.org/10.1088/1742-6596/634/1/012001

  31. Seiberg, N, Witten, E.: String theory and noncommutative geometry. J. High Energy Phys. JHEP09, 032 (1999). https://doi.org/10.1088/1126-6708/1999/09/032

  32. Gracia-Bondia, J. M.: Notes on quantum gravity and noncommutative geometry: New Paths Towards Quantum Gravity.Springer, Berlin, Heidelberg, pp. 3-58 (2010). https://doi.org/10.1007/978-3-642-11897-5_1

  33. Gingrich, D.M.: Noncommutative geometry inspired blackholes in higher dimensions at the LHC. J. High Energ. Phys. 2010, 22 (2010). https://doi.org/10.1007/JHEP05(2010)022

  34. Haouam, I.: Dirac oscillator in dynamical noncommutative space. Acta. Polytech 61(6), 689 (2021). https://doi.org/10.14311/AP.2021.61.0689

  35. Haouam, I., & Alavi, S.A.: Dynamical noncommutative graphene. Int. J. Mod. Phys. A. 37(10), 2250054 (2022). https://doi.org/10.1142/S0217751X22500543

  36. Haouam, I.: The non-relativistic limit of the DKP equation in non-commutative phase-space. Symmetry 11, 223 (2019). https://doi.org/10.3390/sym11020223

    Article  MATH  Google Scholar 

  37. Fring, Andreas, et al.: Strings from position-dependent noncommutativity. J. Phys. A: Math. Theor. 43, 345401 (2010). https://doi.org/10.1088/1751-8113/43/34/345401

    Article  MathSciNet  MATH  Google Scholar 

  38. Haouam, I.: Analytical solution of (2+1) dimensional Dirac equation in time-dependent noncommutative phase-space. Acta. polytech 60(2), 111 (2020). https://doi.org/10.14311/AP.2020.60.0111

  39. Haouam, I.: On the three-dimensional Pauli equation in noncommutative phase-space. Acta. polytech 61(1), 230 (2021). https://doi.org/10.14311/AP.2021.61.0230

  40. Haouam, I.: Two-dimensional pauli equation in noncommutative phase-space. Ukrainian Journal of Physics 66(9), 771 (2021). https://doi.org/10.15407/ujpe66.9.77

  41. Sanjib, D., Fring, A.: Noncommutative quantum mechanics in a time-dependent background. Phys. Rev. D 90(8), 084005 (2014). https://doi.org/10.1103/PhysRevD.90.084005

  42. Streklas, A.: In Theoretical Concepts of Quantum Mechanics. IntechOpen (2012). https://doi.org/10.5772/34933

  43. Streklas, A.: Physica A: statistical mechanics and its applications 385(1), 124 (2007). https://doi.org/10.1016/j.physa.2007.06.038

  44. Bertolami, O., Rosa, J.G., De Aragao, C.M.L., Castorina, P., Zappala, D.: Noncommutative gravitational quantum well. Phys. Rev. D 72, 025010 (2005). https://doi.org/10.1103/PhysRevD.72.025010

  45. Ho, P.M., Kao, H.C.: Noncommutative quantum mechanics from noncommutative quantum field theory. Phys Rev Lett. 88(15), 151602 (2002). https://doi.org/10.1103/PhysRevLett.88.151602

  46. Stern, A.: Noncommutative point sources. Phys Rev Lett 100(6), 061601 (2008). https://doi.org/10.1103/PhysRevLett.100.061601

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Saha, A., Gangopadhyay, S., Saha, S.: Noncommutative quantum mechanics of a harmonic oscillator under linearized gravitational waves. Phys. Rev D 83(2), 025004 (2011). https://doi.org/10.1103/PhysRevD.83.025004

    Article  ADS  Google Scholar 

  48. Chaichian, M., Sheikh-Jabbari, M.M., Tureanu, A.: Hydrogen atom spectrum and the lamb shift in noncommutative QED. Phys. Rev. Lett. 86, 2716 (2001). https://doi.org/10.1103/PhysRevLett.86.2716

    Article  ADS  Google Scholar 

  49. Greiner, W.: Quantum mechanics: an introduction (Springer, 2001) [ISBN: 978-3-540-67458-0]

  50. Ashcroft, N. W., & Mermin, N. D.: Solid state physics. (Harcourt College Edition, 1976) [ISBN: 0-03-0_89393-9]

  51. Gao, X.C., Xu, J.B., Qian, T.Z.: Invariants and geometric phase for systems with non-Hermitian time-dependent Hamiltonians. Phys. Rev. A 46(7), 3626 (1992). https://doi.org/10.1103/physreva.46.3626

  52. Shen, J.Q., Zhu, H.Y., Chen, P.: Exact solutions and geometric phase factor of time-dependent three-generator quantum systems. Eur. Phys. J. D 23, 305 (2003). https://doi.org/10.1140/epjd/e2003-00043-7

    Article  ADS  Google Scholar 

  53. Gao, X.-C., Xu, J.-B., Qian, T-Z:. Geometric phase and the generalized invariant formulation. Phys Rev A 44.11, 7016 (1991). https://doi.org/10.1103/PhysRevA.44.7016

  54. Maamache, M.: Ermakov systems, exact solution, and geometrical angles and phases. Phys. Rev. A 52, 936 (1995). https://doi.org/10.1103/PhysRevA.52.936

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Flügge, S.: Practical Quantum Mechanics, vol. I. Springer, Berlin (1994)

  56. Aharonov, Y., Anandan, J.: Phase change during a cyclic quantum evolution. Phys. Rev. Lett 58(16), 1593 (1987). https://doi.org/10.1103/PhysRevLett.58.1593

    Article  ADS  MathSciNet  Google Scholar 

  57. Dasgupta, Ananda: J. Opt. B: Quantum Semiclass. Opt. 1, 14 (1999). https://doi.org/10.1088/1464-4266/1/1/003

    Article  ADS  Google Scholar 

  58. Krumm, F., Vogel, W.: Time-dependent nonlinear Jaynes-Cummings dynamics of a trapped ion. Phys. Rev A 97(4), 043806 (2018). https://doi.org/10.1103/PhysRevA.97.043806

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, I,H.; investigation- methodology and analysis, I,H.; writing, I,H.; review and validation I,H. and H,H.; All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Ilyas Haouam.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haouam, I., Hassanabadi, H. Exact Solution of (2+1)-Dimensional Noncommutative Pauli Equation in a Time-Dependent Background. Int J Theor Phys 61, 215 (2022). https://doi.org/10.1007/s10773-022-05197-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05197-5

Keywords

Navigation