Skip to main content
Log in

Transferable Quantum Cheque Scheme Based on Quantum Public-Key Cryptography

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Based on the quantum public-key cryptosystem, a transferable quantum cheque scheme is proposed. In our scheme, the bank is a trusted third party who acts as a key generation center and issues quantum blank cheque. The payer makes a payment to the payee by signing the quantum cheque with the private key, and the payee can verify the cheque with the payer’s public key locally. The cheque can be transferred many times between different customers. The transfer and verification phases do not require the help of the bank. Hence, the cheque needs to be cleared only once, which reduces the workload on the bank. Security analysis results show that the proposed quantum cheque scheme is impossible to forge, double spend and repudiate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. D’Ariano, G.M., Yuen, H.P.: Impossibility of measuring the wave function of a single quantum system. Phys. Rev. Lett. 76(16), 2832 (1996)

    Article  ADS  Google Scholar 

  2. Wooters, W.K., Zurek, W.K.: Quantum no-cloning theorem. Nature. 299(802), 16–23 (1982)

    Google Scholar 

  3. Wiesner, S.: Conjugate coding. ACM Sigact News. 15(1), 78–88 (1983)

    Article  Google Scholar 

  4. Lutomirski, A.: An online attack against Wiesner’s quantum money. arXiv preprint arXiv:1010.0256 (2010)

  5. Molina, A., Vidick, T., Watrous, J.: Optimal counterfeiting attacks and generalizations for Wiesner’s quantum money. In: Conference on Quantum Computation. Communication, and Cryptography, pp. 45–64. Springer, Berlin (2012)

  6. Nagaj, D., Sattath, O., Brodutch, A., Unruh, D.: An adaptive attack on Wiesner’s quantum money. Quantum Inf. Comput. 16(11&12), 1048–1070 (2016)

    MathSciNet  Google Scholar 

  7. Bennett, C.H., Brassard, G., Breidbart, S., Wiesner, S.: Quantum cryptography, or unforgeable subway tokens. In Advances in Cryptology, pp.267-275. Springer, Boston (1983)

  8. Gavinsky, D.: Quantum money with classical verification. In 2012 IEEE 27th Conference on Computational Complexity, pp. 42-52. IEEE (2012)

  9. Kumar, N.: Practically feasible robust quantum money with classical verification. Cryptography. 3(4), 26 (2019)

    Article  Google Scholar 

  10. Aaronson, S.: Quantum copy-protection and quantum money. In 2009 24th Annual IEEE Conference on Computational Complexity, pp. 229-242. IEEE (2009)

  11. Mosca, M., Stebila, D.: Quantum coins. Error-correcting codes, finite geometries and cryptography. 523, 35–47 (2010)

    Article  MathSciNet  Google Scholar 

  12. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang, K.: On the (im) possibility of obfuscating programs. In Annual international cryptology conference, pp. 1-18. Springer, Berlin (2001)

  13. Barak, B.: How to go beyond the black-box simulation barrier. In Proceedings 42nd IEEE Symposium on Foundations of Computer Science, pp. 106-115, IEEE (2001)

  14. Childs, A. M.: Secure assisted quantum computation. arXiv preprint quant-ph/0111046 (2001)

  15. Broadbent, A., Fitzsimons, J., Kashefi, E.: Universal blind quantum computation. In 2009 50th Annual IEEE Symposium on Foundations of Computer Science, pp. 517-526. IEEE (2009)

  16. Farhi, E., Gosset, D., Hassidim, A., Lutomirski, A., Shor, P.: Quantum money from knots. In Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, pp. 276-289 (2012)

  17. Aaronson, S., Christiano, P.: Quantum money from hidden subspaces. In Proceedings of the forty-fourth annual ACM symposium on Theory of computing, pp. 41-60 (2012)

  18. Behera, A., Sattath, O.: Almost Public Quantum Coins. arXiv preprint arXiv:2002.12438 (2020)

  19. Al-Daoud, E.: Unconditionally secure quantum payment system. In Proc of World Academy of Science, Engineering and Technology 20(4), 64–67 (2007)

    Google Scholar 

  20. Moulick, S.R., Panigrahi, P.K.: Quantum cheques. Quantum Inf. Process. 15(6), 2475–2486 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  21. Behera, B.K., Banerjee, A., Panigrahi, P.K.: Experimental realization of quantum cheque using a five-qubit quantum computer. Quantum Inf. Process. 16(12), 1–12 (2017)

    Article  MathSciNet  Google Scholar 

  22. Ngoc, D. D., Van, M. N.: Quantum E-Cheques. arXiv preprint arXiv:1705.10083 (2017)

  23. Do NgocC, D.I.E.P.: Transfering quantum e-cheques in nonsecured channels. System. 2(10), 01 (2017)

    Google Scholar 

  24. Kashefi, E., Kerenidis, I.: Statistical Zero Knowledge and quantum one-way functions. Theor. Comput. Sci. 378(1), 101 (2007)

    Article  MathSciNet  Google Scholar 

  25. Hosoyamada, A., Yasuda, K.: Building quantum-one-way functions from block ciphers: Davies-Meyer and Merkle-Damgard constructions. In: International conference on the theory and application of cryptology and information security, pp. 275-304. Springer, Cham (2018)

  26. Gottesman, D., Chuang, I.: Quantum digital signatures. arXiv:quantph/0105032 (2001)

  27. Buhrman, H., Cleve, R., Watrous, J., De Wolf, R.: Quantum fingerprinting. Phys. Rev. Lett. 87(16), 167902 (2001)

    Article  ADS  Google Scholar 

  28. Behera, A., Paul, G.: Quantum to classical one-way function and its applications in quantum money authentication. Quantum Inf. Process. 17(8), 200 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  29. Luo, M.X., Chen, X.B., Yun, D., Yang, Y.X.: Quantum public-key cryptosystem. Int. J. Theor. Phys. 51(3), 912 (2012)

    Article  MathSciNet  Google Scholar 

  30. Shang, T., Tang, Y., Chen, R., Liu, J.: Full quantum one-way function for quantum cryptography. Quantum Eng. 2(1), e32 (2020)

    Article  Google Scholar 

  31. Holevo, A.S.: Problems in the mathematical theory of quantum communication channels. Reports Math. Phys. 12(2), 273 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  32. Luo, M.X., Chen, X.B., Yun, D., Yang, Y.X.: Quantum signature scheme with weak arbitrator. Int. J. Theor. Phys. 51(7), 2135 (2012)

    Article  Google Scholar 

  33. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  34. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  35. Ljunggren, D., Bourennane, M., Karlsson, A.: Authority-based user authentication in quantum key distribution. Phys. Rev. A. 62(2), 022305 (2000)

    Article  ADS  Google Scholar 

Download references

Funding

This work is supported by National Natural Science Foundation of China (Grant Nos. 61772134, 61701553), National Social Science Foundation of China (21BZZ108), National Defense Science and Technology Innovation Special Zone Project (No. 18-163-11-ZT-002-045-04) and the Open Foundation of State key Laboratory of Networking and Switching Technology (Beijing University of Posts and Telecommunications) (SKLNST-2018-1-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heng-Yue Jia.

Ethics declarations

Conflicts of interest

The authors have no relevant financial or non-financial interests to disclose.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, HM., Jia, HY., Wu, X. et al. Transferable Quantum Cheque Scheme Based on Quantum Public-Key Cryptography. Int J Theor Phys 61, 210 (2022). https://doi.org/10.1007/s10773-022-05195-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05195-7

Keywords

Navigation