Skip to main content
Log in

Multi-party Quantum Key Agreement Protocol for Detection of Collusive Attacks in each Sub-Circle Segment by Headers

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

It's conceivable to have a few dishonest participants when you want to exchange a secret key among participants in a certain network. Due to dishonest participants, a secret key could be altered and disclosed outside of a network. It is reasonable that each participant's involvement would be assessed by a certain organization. The same approach that a secret key must be protected by a header. The protocol to identify two dishonest members in a circular network was proposed by Liu et al. To identify conspirators, Sun et al. expand on the work of Liu et al. Sun et al. suggested a multiparty quantum key agreement protocol based on a circular-type, in which the dishonesty of each member was unknown. To investigate dishonesty, we append a header with a secret key to the Liu et al. and Sun et al. works. Because of the header, the following participants are aware of secret key tampering. Even if some participants became dishonest about a secret key, a circle-type network provided absolute security. There is no performance degradation of the proposed multiparty quantum key agreement protocol with addition of a header.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The data used to support the finding of this study are included in https://arxiv.org/pdf/1604.01112.pdf.

References

  1. Stallings, W.: Network security essentials: Applications and standards, 4th edn. Pearson Education, India (2003)

    Google Scholar 

  2. Moore, G.E.: Cramming more components onto integrated circuits. 114–117 (1965)

  3. Stallings, W..: Cryptography and network security, 4th edn. Pearson Education, India (2006)

    Google Scholar 

  4. Stinson, D.R.: Cryptography: theory and practice. Chapman and Hall/CRC (2005)

    Book  Google Scholar 

  5. Nielsen, M.A., Chuang, I.: Quantum computation and quantum information. 558–559 (2002)

  6. Perry, R.T.: The temple of quantum computing. Riley Perry standard, Australia, Available on: http://www.toqc.com/TOQCv1_1.pdf. Accessed 10 Mar 2022.

  7. Pittenger, A.O. An introduction to quantum computing algorithms, Vol. 19. Springer Science & Business Media (2012)

  8. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  9. Bennett, C.H., et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  10. Bennett, C.H., et al.: Strengths and weaknesses of quantum computing. SIAM J. Comput. 26(5), 1510–1523 (1997)

    Article  MathSciNet  Google Scholar 

  11. Bennett, C.H., Shor, P.W.: Quantum information theory. IEEE Trans. Inf. Theory 44(6), 2724–2742 (1998)

    Article  MathSciNet  Google Scholar 

  12. Bennett, C.H., DiVincenzo, D.P.: Quantum information and computation. Nature 404(6775), 247–255 (2000)

    Article  ADS  Google Scholar 

  13. Bennett, C.H., Brassard G.: Quantum cryptography: Public key distribution and coin tossing. arXiv preprint arXiv:2003.06557 (2020)

  14. Ekert, A.K.: Quantum Cryptography and Bell’s Theorem. Quantum Measurements in Optics, pp. 413–418. Springer, Boston (1992)

    Book  Google Scholar 

  15. Chun-Yan, L., et al.: Secure quantum key distribution network with Bell states and local unitary operations. Chin. Phys. Lett. 22(5):1049 (2005) https://arxiv.org/pdf/0705.1746.pdf. Accessed 10 Mar 2022

  16. Branciard, Cyril, et al.: Security of two quantum cryptography protocols using the same four qubit states. Phys. Rev. A 72(3), 032301 (2005)

    Article  ADS  Google Scholar 

  17. Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM J. Comput. 26(5), 1411–1473 (1997)

    Article  MathSciNet  Google Scholar 

  18. Sun, Z., Huang, J., Wang, P.: Efficient multiparty quantum key agreement protocol based on commutative encryption. Quantum Inf. Process. 15(5), 2101–2111 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  19. Mohajer, R., Eslami, Z.: Cryptanalysis of a multiparty quantum key agreement protocol based on commutative encryption. Quantum Inf. Process. 16(8), 1–9 (2017)

    Article  MathSciNet  Google Scholar 

  20. Huang, W., et al.: Cryptanalysis of a multi-party quantum key agreement protocol with single particles. Quantum Inf. Process. 13(7), 1651–1657 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  21. Cao, H., Ma, W.: Multiparty quantum key agreement based on quantum search algorithm. Sci. Rep. 7(1), 1–10 (2017)

    Article  MathSciNet  Google Scholar 

  22. Gu, J., Hwang, T.: Improvement of “Novel multiparty quantum key agreement protocol with GHZ states.” Int. J. Theor. Phys. 56(10), 3108–3116 (2017)

    Article  MathSciNet  Google Scholar 

  23. Liu, B., et al.: Multiparty quantum key agreement with single particles. Quantum Inf. Process. 12(4), 1797–1805 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  24. Liu, H.-N., et al.: Multi-party quantum key agreement protocol with bell states and single particles. Int. J. Theor. Phys. 58(5), 1659–1666 (2019)

    Article  Google Scholar 

  25. Liu, B., et al.: Collusive attacks to “circle-type” multi-party quantum key agreement protocols. Quantum Inf. Process. 15(5), 2113–2124 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  26. Min, S.-Q., Chen, H.-Y., Gong, L.-H.: Novel multi-party quantum key agreement protocol with g-like states and bell states. Int. J. Theor. Phys. 57(6), 1811–1822 (2018)

    Article  MathSciNet  Google Scholar 

  27. Sun, Z., Jianping, Yu., Wang, P.: Efficient multi-party quantum key agreement by cluster states. Quantum Inf. Process. 15(1), 373–384 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  28. Wang, P., Sun, Z., Sun, X.: Multi-party quantum key agreement protocol secure against collusion attacks. Quantum Inf. Process. 16(7), 1–10 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  29. Xu, G.-B., et al.: Novel multiparty quantum key agreement protocol with GHZ states. Quantum Inf. Process. 13(12), 2587–2594 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  30. Yin, X.-R., Ma, W.-P., Liu, W.-Y.: Three-party quantum key agreement with two-photon entanglement. Int. J. Theor. Phys. 52(11), 3915–3921 (2013)

    Article  MathSciNet  Google Scholar 

  31. Cabello, A.: Multiparty key distribution and secret sharing based on entanglement swapping. arXiv preprint quant-ph/0009025 (2000)

  32. Zhao, X.-Q., et al.: Multiparty quantum key agreement protocol with entanglement swapping. Int. J. Theor. Phys. 58(2), 436–450 (2019)

    Article  Google Scholar 

  33. Bennett, C.H., Brassard, G.: Public-key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179. Ban-galore (1984)

  34. Sihare, S., Nath, V.V.: Multiple Entities Search through Simon's Quantum Algorithm. 2017 IEEE 7th International Advance Computing Conference (IACC). IEEE, (2017)

  35. Sihare, S., Nath, V.: Revisited quantum protocols. Int. J. Math. Sci. Comput. (IJMSC) 3(2), 11–21 (2017)

    Google Scholar 

  36. Sihare, S.R., Nath, V.V.: Application of quantum search algorithms as a web search engine. 2016 International Conference on Global Trends in Signal Processing, Information Computing and Communication (ICGTSPICC). IEEE, (2016)

  37. Nath, V.V.: Time and space complexies of Shor’s, Grover’s Algorithms Over Classical Algorithms.

  38. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85(26), 5635 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyam R. Sihare.

Ethics declarations

Conflict of Interest

The author declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sihare, S.R. Multi-party Quantum Key Agreement Protocol for Detection of Collusive Attacks in each Sub-Circle Segment by Headers. Int J Theor Phys 61, 208 (2022). https://doi.org/10.1007/s10773-022-05184-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05184-w

Keywords

Navigation