Skip to main content
Log in

Probing the Anomalous tqgamma Couplings in Photon-Proton Collisions

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The top quark flavor changing neutral current processes are extremely suppressed within the Standard Model. Nevertheless, they could be enhanced in a new physics model beyond the Standard Model. Investigating the top quark’s flavor changing neutral current interactions at colliders would be an important test in terms of new physics. In this work, we examine the potentials of the processes \({e^{-}} {p} {\rightarrow } {e^{-}} {\gamma } {p} {\rightarrow } {e^{-}} W^{+} b {\gamma }{\rightarrow } {e^{-}} {j} {\bar {j}} b {\gamma }\) and \({e^{-}} {p} {\rightarrow } {e^{-}} {\gamma } {p} {\rightarrow } {e^{-}} W^{+} b {\gamma }{\rightarrow } {e^{-}} \textit {l} {\nu }_{\textit {l}} b {\gamma }\) at the FCC-eh with \(\sqrt {s}=7.08\) and 10.0 TeV to study anomalous tqγ couplings via effective Lagrangians. We obtain 95% confidence level sensitivities on the anomalous coupling parameters at the two FCC-eh energies and various integrated luminosities. We find that our limits are at least two orders of magnitude better than the current LHC experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aad, G., et al.: ATLAS Collaboration, The HiggsTools handbook: a beginners guide to decoding the Higgs sector. Phys. Lett. B 716, 1 (2012)

    Article  ADS  Google Scholar 

  2. Chatrchyan, S., et al.: CMS collaboration, observation of a new Boson at a mass of 125 GeV with the CMS Experiment at the LHC. Phys. Lett. B 716, 30–61 (2012)

    Article  ADS  Google Scholar 

  3. Najafabadi, M.M., Tazik, N.: Study of the top quark. FCNC Commun. Theor. Phys. 52, 662–664 (2009)

    Article  ADS  MATH  Google Scholar 

  4. Khatibi, S., Najafabadi, M.M.: Probing the anomalous FCNC interactions in top-Higgs final state and charge ratio approach. Phys. Rev. D 89, 054011 (2014)

    Article  ADS  Google Scholar 

  5. Glashow, S.L., Iliopoulos, J., Maiani, L.: Weak interactions with Lepton-Hadron symmetry. Phys. Rev. D 2, 1285–1292 (1970)

    Article  ADS  Google Scholar 

  6. Aguilar-Saavedra, J.A., Nobre, B.M.: Rare top decays t → c gamma, t → cg and CKM unitarity. Phys. Lett. B 553, 251–260 (2003)

    Article  ADS  Google Scholar 

  7. Lopez, J.L., Nanopoulos, D.V., Rangarajan, R.: New supersymmetric contributions to \(t{\rightarrow }c V\). Phys. Rev. D 5, 3100–3106 (1997)

    Article  ADS  Google Scholar 

  8. Cao, J.J., et al.: SUSY-induced FCNC top-quark processes at the large hadron collider. Phys. Rev. D 75, 075021 (2007)

    Article  ADS  Google Scholar 

  9. Baum, I., Eilam, G., Bar-Shalom, S.: Scalar flavor changing neutral currents and rare top quark decays in a two H iggs doublet model ‘for the top quark’. Phys. Rev. D 77, 113008 (2008)

    Article  ADS  Google Scholar 

  10. Atwood, D., Reina, L., Soni, A.: Probing flavor changing top - charm - scalar interactions in e+e collisions. Phys. Rev. D 53, 1199 (1996)

    Article  ADS  Google Scholar 

  11. Agashe, G.P.K., Soni, A.: Flavor structure of warped extra dimension models. Phys. Rev. D 71, 016002 (2005)

    Article  ADS  Google Scholar 

  12. Fajfer, S., Kamenik, J.F.: . J. High Energ. Phys. 0712, 071 (2007)

    Google Scholar 

  13. Cao, J.J., et al.: Top-quark FCNC productions at CERN LHC in topcolor-assisted technicolor model. Phys. Rev. D 76, 014004 (2007)

    Article  ADS  Google Scholar 

  14. Zhang, H.-J.: Top-quark FCNC decay t → cgg in topcolor-assisted technicolor model. Phys. Rev. D 77, 057501 (2008)

    Article  ADS  Google Scholar 

  15. Li, C.S., Oakes, R.J., Yuan, T.C.: QCD corrections to \(t{\rightarrow }W^{+}b\). Phys. Rev. D 43, 3759 (1991)

    Article  ADS  Google Scholar 

  16. Li, X.-Q., et al.: . J. High Energ. Phys. 1108, 075 (2011)

    Article  ADS  Google Scholar 

  17. Ashimova, A.A., Slabospitsky, S.R.: . Phys. Lett. B 668, 282285 (2008)

    Article  Google Scholar 

  18. Cakir, O., et al.: Search for top quark FCNC couplings in Z’ models at the LHC and CLIC. Eur. Phys. J. C 70, 295–303 (2010)

    Article  ADS  Google Scholar 

  19. Cakir, O.: Anomalous production of top quarks at CLIC + LHC based γp colliders. J. Phys. G 29, 1181–1192 (2003)

    Article  ADS  Google Scholar 

  20. Zhang, Y., et al.: Next-to-leading order QCD corrections to the top quark associated with γ production via model-independent flavor-changing neutral-current couplings at hadron colliders. Phys.Rev. D 83, 094003 (2011)

    Article  ADS  Google Scholar 

  21. Goldouzian, R., Clerbaux, B.: Photon initiated single top quark production via flavor-changing neutral currents at the LHC. Phys.Rev. D 95, 054014 (2017)

    Article  ADS  Google Scholar 

  22. Larios, F., et al.: Constraints on top quark FCNC from electroweak precision measurements. Phys.Rev. D 72, 057504 (2005)

    Article  ADS  Google Scholar 

  23. Cordero-Cid, A., et al.: Effective Lagrangian approach to Higgs-mediated FCNC top quark decays. Phys. Rev. D 70, 074003 (2004)

    Article  ADS  Google Scholar 

  24. Gao, J., Li, C.S., Zhang, J.J., Zhu, H.X.: Next-to-leading order QCD corrections to the single top quark production via model-independent t-q-g flavor-changing neutral-current couplings at hadron colliders. Phys. Rev. D 80, 114017 (2009)

    Article  ADS  Google Scholar 

  25. Ferreira, P.M., Santos, R.: Impact of FCNC top quark interactions on BR(t → b W). Phys. Rev. D 80, 114006 (2009)

    Article  ADS  Google Scholar 

  26. Han, T., Hewett, J.L.: Top charm associated production in high-energy e+e collisions. Phys. Rev. D 60, 074015 (1999)

    Article  ADS  Google Scholar 

  27. Han, T., Peccei, R.D., Zhang, X.: Top quark decay via flavor changing neutral currents at hadron colliders. Nucl. Phys. B 454, 527–540 (1995)

    Article  ADS  Google Scholar 

  28. Sun, H.: Probe anomalous tqγ couplings through single top photoproduction at the LHC. Nucl. Phys. B 886, 691–711 (2014)

    Article  ADS  Google Scholar 

  29. Koksal, M., Inan, S.C.: Anomalous tqγ cuplings in γp collision at the LHC. Adv. High Energy Phys. 2014, 935840 (2014)

    Article  Google Scholar 

  30. Oyulmaz, K.Y., et al.: Probing anomalous tqγ and tqg couplings via single top production in association with photon at FCC-hh. Eur. Phys. J. C 79, 1–83 (2019)

    Article  Google Scholar 

  31. Turk Cakir, I., et al.: Probing the anomalous FCNC couplings at large hadron electron collider. Adv. High Energy Phys. 2017, 1572053 (2017)

    Article  Google Scholar 

  32. Denizli, H., et al.: Top quark FCNC couplings at future circular hadron electron colliders. Phys. Rev. D 96, 015024 (2017)

    Article  ADS  Google Scholar 

  33. Cakir, O., et al.: Probing top quark FCNC tqγ and tqZ couplings at future electron-proton colliders. Nucl. Phys. B 944, 114640 (2019)

    Article  MATH  Google Scholar 

  34. Guo, Y, Yue, C., Yang, S.: Search for anomalous couplings via single top quark production in association with a photon at LHC. Eur. Phys. J. C 76, 11–596 (2016)

    Article  ADS  Google Scholar 

  35. CLICdp Collaboration: CLICDP-PUB-2018-003, top-quark physics at the CLIC electron-positron linear collider. J. High Energ. Phys. 11, 003 (2019)

    ADS  Google Scholar 

  36. Khatibi, S., Najafabadi, M.M.: Constraints on top quark flavor changing neutral currents using diphoton events at the LHC. Nucl. Phys. B 909, 607–618 (2016)

    Article  ADS  Google Scholar 

  37. Khanpour, H., et al.: Single top quark production as a probe of anomalous tqγ and tqZ couplings at the FCC-ee. Phys. Lett. B 775, 25–31 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  38. Inan, S.C.: Dimension-six anomalous tqγ couplings in γγ collision at the LHC. Nucl. Phys. B 897, 289–301 (2015)

    Article  ADS  MATH  Google Scholar 

  39. Khanpour, H.: Probing top quark FCNC couplings in the triple-top signal at the high energy LHC and future circular collider. Nucl. Phys. B 958, 115141 (2020)

    Article  MATH  Google Scholar 

  40. Aaltonen, T., et al.: CDF Collaboration, Search for top-quark production via flavor-changing neutral currents in W + 1 jet events at CDF. Phys. Rev. Lett. 102, 151801 (2009)

    Article  ADS  Google Scholar 

  41. Abazov, V.M., et al.: D0 Collaboration, Search for flavor changing neutral currents in decays of top quarks. Phys. Lett. B 701, 313–320 (2011)

    Article  ADS  Google Scholar 

  42. Aaltonen, T., et al.: CDF Collaboration, Search for the flavor changing neutral current decay \(t{\rightarrow }Zq\) in \(p\bar {p}\) collisions at \(\sqrt {s} = 1.96\) TeV. Phys. Rev. Lett. 101, 192002 (2009)

    Article  ADS  Google Scholar 

  43. Heister, A., et al.: ALEPH Collaboration. Phys. Lett. B 543, 173 (2002)

    Article  ADS  Google Scholar 

  44. Abdallah, J., et al.: DELPHI Collaboration, Search for single top production via FCNC at LEP at \(\sqrt {s} = 189\)-GeV to 208-GeV. Phys. Lett. B 590, 21–34 (2004)

    Article  ADS  Google Scholar 

  45. Abbiendi, G., et al.: OPAL Collaboration, Search for single top quark production at LEP-2. Phys. Lett. B 521, 181–194 (2001)

    Article  ADS  Google Scholar 

  46. Achard, P., et al.: L3 Collaboration, Search for single top production at LEP. Phys. Lett. B 549, 290–300 (2002)

    Article  ADS  Google Scholar 

  47. The LEP Exotica WG, LEP Exotica WG 2001–01

  48. Aktas, A., et al.: H1 Collaboration, Inclusive dijet production at low Bjorken x in deep inelastic scattering. Eur. Phys. J. C 33, 477–493 (2004)

    Article  Google Scholar 

  49. Aad, G., et al.: ATLAS Collaboration, Search for FCNC single top-quark production at \(\sqrt {s}=7\) TeV with the ATLAS detector. Phys. Lett. B 712, 351–369 (2012)

    Article  ADS  Google Scholar 

  50. Aad, G., et al.: A search for flavour changing neutral currents in top-quark decays in pp collision data collected with the ATLAS detector at \(\sqrt {s} = 7\) TeV. J. High Energ. Phys. 1209, 139 (2012)

    ADS  Google Scholar 

  51. Khachatryan, V.: CMS Collaboration, Search for anomalous single top quark production in association with a photon in pp collisions at \(\sqrt {s} = 8\) TeV. J. High Energ. Phys. 04, 035 (2016)

    Article  ADS  Google Scholar 

  52. CMS Collaboration, J.: . High Energ. Phys. 1806, 102 (2018)

    Article  Google Scholar 

  53. Aad, G., et al.: ATLAS Collaboration, Search for flavour-changing neutral currents in processes with one top quark and a photon using 81 fb− 1 of \(p\bar {p}\) collisions at \(\sqrt {s} = 13\) TeV with the ATLAS experiment. Phys. Lett. B 800, 135082 (2020)

    Article  Google Scholar 

  54. ATLAS Collaboration: Search for flavour-changing neutral-current couplings between the top quark and the photon with the ATLAS detector at \(\sqrt {s} = 13\) TeV. [arXiv:2205.02537 [hep-ex]]

  55. Abada, A., et al.: FCC Collaboration, FCC Physics opportunities : Future circular collider conceptual design report volume 1. Eur. Phys. J. C 79(6), 474 (2019)

    Article  ADS  Google Scholar 

  56. Abada, A., et al.: FCC Collaboration, FCC-hh: The Hadron collider : Future circular collider conceptual design report volume 3. Eur. Phys. J. ST 228 (4), 755–1107 (2019)

    Article  ADS  Google Scholar 

  57. Acar, Y.C., et al.: Future circular collider based lepton–hadron and photon–hadron colliders: Luminosity and physics. Nuclear Inst. Methods Phys. Res. A 871, 47–53 (2017)

    Article  ADS  Google Scholar 

  58. Bruning, O., et al.: Future circular collider study FCC-he baseline parameters. CERN-ACC-2017-0019 (2017)

  59. Budnev, V.M., Ginzburg, I.F., Meledin, G.V., Serbo, V.G.: The two-photon particle production mechanism. Physical problems. Applications. Equivalent photon approximation. Phys. Rep. 15, 181 (1975)

    Article  ADS  Google Scholar 

  60. Baur, G., et al.: Coherent γγ and γA interactions in very peripheral collisions at relativistic ion colliders. Phys. Rep. 364, 359 (2002)

    Article  ADS  Google Scholar 

  61. Piotrzkowski, K.: Tagging two photon production at the CERN LHC. Phys. Rev. D 63, 071502 (2001)

    Article  ADS  Google Scholar 

  62. Pumplin, J., Stump, D.R., Huston, J., Lai, H.L., Nadolsky, P.M., Tung, W.K.: New generation of parton distributions with uncertainties from global QCD analysis. J. High Energ. Phys., 0207012 (2002)

  63. Khatibi, S., Moallemi, M.: Probing FCNC couplings in single top-quark production associated with a neutral gauge boson in future lepton colliders. J. Phys. G 48(12), 125004 (2021)

    Article  ADS  Google Scholar 

  64. Aguilar-Saavedra, J.A.: A Minimal set of top anomalous couplings. Nucl. Phys. B 812, 181 (2009)

    Article  ADS  MATH  Google Scholar 

  65. Aguilar-Saavedra, J.A.: A Minimal set of top-Higgs anomalous couplings. Nucl. Phys. B 821, 215 (2009)

    Article  ADS  MATH  Google Scholar 

  66. Alwall, J., et al.: The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. J. High Energ. Phys. 1407, 079 (2014)

    Article  ADS  Google Scholar 

  67. Degrande, C., Duhr, C., Fuks, B., Grellscheid, D., Mattelaer, O., Reiter, T.: UFO - the universal FeynRules output. Comput. Phys. Commun. 183, 1201–1214 (2012)

    Article  ADS  Google Scholar 

  68. Alloul, A., Christensen, N.D., Degrande, C., Duhr, C., Fuks, B.: Comput. Phys. Commun. 185, 2250. [arXiv:1310.1921 [hep-ph]] (2014)

  69. Amorim, A., Santiago, J., Castro, N., Santos, R.: http://feynrules.irmp.ucl.ac.be/wiki/GeneralFCNTop

  70. Pumplin, J., Stump, D.R., Huston, J., Lai, H.L., Nadolsky, P.M., Tung, W.K.: New generation of parton distributions with uncertainties from global QCD analysis. J. High Energ. Phys. 0207, 012 (2002)

    Article  ADS  Google Scholar 

  71. Conte, E., Fuks, B., Serret, G.: MadAnalysis 5, a user-friendly framework for collider phenomenology. Comput. Phys. Commun. 184, 222–256 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  72. Aad, G., et al.: ATLAS Collaboration, ATLAS b-jet identification performance and efficiency measurement with \(t\bar {t}\) events in pp collisions at \(\sqrt {s} = 13\). Eur. Phys. J. C 79, 970 (2019)

    Article  ADS  Google Scholar 

  73. Aaboud, M., et al.: ATLAS Collaboration, Measurements of b-jet tagging efficiency with the ATLAS detector using \(t\bar {t}\) events at \(\sqrt {s} = 13\) TeV. J. High Energ. Phys. 08, 089 (2018)

    ADS  Google Scholar 

  74. Pierzchala, T., Piotrzkowski, K.: Sensitivity to anomalous quartic gauge couplings in photon-photon interactions at the LHC. Nucl. Phys. Proc. Suppl. 179-180, 257–264 (2008)

    Article  ADS  Google Scholar 

  75. Inan, S.C.: Dimension-six anomalous tqγ couplings in γγ collision at the LHC. Nucl. Phys. B 897, 289–301 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author thanks to Prof. Dr. Murat Köksal from Sivas Cumhuriyet University who provided insights and expertise that greatly assisted the research.

Author information

Authors and Affiliations

Authors

Contributions

E.Alici wrote the main manuscript text and prepared all figures.

Corresponding author

Correspondence to E. Alici.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alici, E. Probing the Anomalous tqgamma Couplings in Photon-Proton Collisions. Int J Theor Phys 61, 193 (2022). https://doi.org/10.1007/s10773-022-05181-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05181-z

Keywords

Navigation