Skip to main content
Log in

Simultaneous Quantum Teleportation within a Quantum Network

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Traditional classical internet facilitates the sharing of classical information between computers and devices serving as nodes while 'to be evolved' Quantum-Internet would be applied for exchanging or transmission of quantum information between nodes of a large-scale quantum network, nowadays a near-term Quantum Technology. We investigate, in this work, some basic protocols for simultaneous transmission of quantum information encoded in two arbitrary quantum-bits between different quantum nodes of a quantum network, which is a building block of Quantum Internet. These protocols utilized the intertwining property of a four-qubit cluster state for disembodied simultaneous transmission of two arbitrary single-qubit information states in three different scenarios: two senders & one receiver, one sender & two receivers and one sender & one receiver. We also generalize our schemes for simultaneous quantum teleportation of two unknown multi-qubit entangled states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

No data has been used in the present study.

References

  1. Bennett, C.H., et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(3), 1895–1899 (1993). https://doi.org/10.1103/PhysRevLett.70.1895

    Article  MathSciNet  MATH  ADS  Google Scholar 

  2. Ikram, M., Zhu, S.-Y., Zubairy, M.S.: Quantum teleportation of an entangled state. Phys. Rev. A. 62(2), 022307 (2000). https://doi.org/10.1103/PhysRevA.62.022307

    Article  MathSciNet  ADS  Google Scholar 

  3. Yang, C.P., Guo, G.C.: Multiparticle generalization of teleportation. Chin. Phys. Lett. 17(3), 162 (2000). https://doi.org/10.1088/0256-307X/17/3/003

    Article  ADS  Google Scholar 

  4. Lee, J., Min, H., Oh, S.D.: Multipartite entanglement for entanglement teleportation. Phys. Rev. A. 66, 052318 (2002). https://doi.org/10.1103/PhysRevA.66.052318

    Article  ADS  Google Scholar 

  5. Prakash, H., Chandra, N., Prakash, R., Dixit, A.: A generalized condition for teleportation of the quantum state of an assembly of n two-level system. Mod. Phys. Lett. B. 21(29), 2019–2023 (2007). https://doi.org/10.1142/S0217984907014346

    Article  MATH  ADS  Google Scholar 

  6. Cheung, C.-Y., Zhang, Z.-J.: Criterion for faithful teleportation with an arbitrary multiparticle channel. Phys. Rev. A. 80, 022327 (2009). https://doi.org/10.1103/PhysRevA.80.022327

    Article  ADS  Google Scholar 

  7. Verma, V., Prakash, H.: Standard quantum teleportation and controlled quantum teleportation of an arbitrary N-qubit information state. Int. J. Theo. Phy. 55, 2061–2070 (2016). https://doi.org/10.1007/s10773-015-2846-1

    Article  MATH  Google Scholar 

  8. Qin, Z.-X., et al.: Simpler criterion and flexibility of operation complexity for perfectly teleporting arbitrary n-qubit state with 2n-qubit pure state. Sci China. 53, 2069–2073 (2010). https://doi.org/10.1007/s11433-010-4111-1

    Article  Google Scholar 

  9. Bouwmeester, D., et al.: Experimental quantum teleportation. Nature. 390, 575–579 (1997). https://doi.org/10.1038/37539

    Article  MATH  ADS  Google Scholar 

  10. Boschi, D., et al.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 80(6), 1121 (1998). https://doi.org/10.1103/PhysRevLett.80.1121

    Article  MathSciNet  MATH  ADS  Google Scholar 

  11. Zhang, Q., et al.: Experimental quantum teleportation of a two-qubit composite system. Nature Phys. 2, 678–682 (2006). https://doi.org/10.1038/nphys417

    Article  ADS  Google Scholar 

  12. Jin, X.-M., et al.: Experimental free-space quantum teleportation. Nat. Photonics. 4, 376–381 (2010). https://doi.org/10.1038/nphoton.2010.87

    Article  ADS  Google Scholar 

  13. Yin, J., et al.: Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature. 488, 185–188 (2012). https://doi.org/10.1038/nature11332

    Article  ADS  Google Scholar 

  14. Ren, J.G., et al.: Ground-to-satellite quantum teleportation. Nature. 549, 70–73 (2017). https://doi.org/10.1038/nature23675

    Article  ADS  Google Scholar 

  15. Chuang, L.D., Liang, C.Z.: Teleportation of two-particle entangled state via cluster state. Commun. Theor. Phys. 47(3), 464 (2007). https://doi.org/10.1088/0253-6102/47/3/017

    Article  ADS  Google Scholar 

  16. Rigolin, G.: Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement. Phys. Rev. A. 71(3), 032303 (2005). https://doi.org/10.1103/PhysRevA.71.032303

    Article  MathSciNet  ADS  Google Scholar 

  17. Agrawal, P., Pati, A.K.: Probabilistic quantum teleportation. Phys. Lett. A. 305, 12–17 (2002). https://doi.org/10.1016/S0375-9601(02)01383-X

    Article  MathSciNet  MATH  ADS  Google Scholar 

  18. Praksh, H., Verma, V.: Minimum assured fidelity and minimum average fidelity in quantum teleportation of single qubit using non-maximally entangled states. Quantum Inf. Process. 11, 1951–1959 (2012). https://doi.org/10.1007/s11128-011-0348-5

    Article  MathSciNet  MATH  ADS  Google Scholar 

  19. Cao, H.J., Guo, Y.Q., Song, H.S.: Teleportation of an unknown bipartite state via non-maximally entangled two-particle state. Chin. Phys. 15(5), 915 (2006). https://doi.org/10.1088/1009-1963/15/5/007

    Article  Google Scholar 

  20. Meng, Q., et al.: Standard teleportation of one-qubit state and partial teleportation of two-qubit state via X-states. Commun. Theor. Phys. 57(2), 201 (2012). https://doi.org/10.1088/0253-6102/57/2/06

    Article  MATH  ADS  Google Scholar 

  21. Bandhyopadhyay, S., Sanders, B.C.: Quantum teleportation of composite systems via mixed entangled states. Phys. Rev. A. 74(3), 032310 (2006). https://doi.org/10.1103/PhysRevA.74.032310

    Article  ADS  Google Scholar 

  22. Karlson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A. 58(6), 4394 (1998). https://doi.org/10.1103/PhysRevA.58.4394

    Article  MathSciNet  ADS  Google Scholar 

  23. Yang, C.P., Chu, S.I., Han, S.: Efficient many-party controlled teleportation of multiqubit quantum information via entanglement. Phys. Rev. A. 70(2), 022329 (2004). https://doi.org/10.1103/PhysRevA.70.022329

    Article  ADS  Google Scholar 

  24. Man, Z.X., Xia, Y.J., An, N.B.: Genuine multiqubit entanglement and controlled teleportation. Phys. Rev. A. 75(5), 052306 (2007). https://doi.org/10.1103/PhysRevA.75.052306

    Article  ADS  Google Scholar 

  25. Prakash, H., Maurya, A.K.: Quantum teleportation using entangled 3-qubit states and the ‘magic bases’. Optics Commun. 284(20), 5024–5030 (2011). https://doi.org/10.1016/j.optcom.2011.07.002

    Article  ADS  Google Scholar 

  26. Yan, F., Wang, D.: Probabilistic and controlled teleportation of unknown quantum states. Phys. Lett. A. 316(5), 297–303 (2003). https://doi.org/10.1016/j.physleta.2003.08.007

    Article  MathSciNet  MATH  ADS  Google Scholar 

  27. Dong, J., Teng, J.F.: Controlled teleportation of an arbitrary n-qudit state using nonmaximally entangled GHZ states. Eur. Phys. J. D. 49, 129–134 (2008). https://doi.org/10.1140/epjd/e2008-00141-0

    Article  ADS  Google Scholar 

  28. Nie, Y.Y., et al.: Non-maximally entangled controlled teleportation using four particles cluster states. Int. J. Theor. Phys. 48, 1485–1490 (2009). https://doi.org/10.1007/s10773-008-9920-x

    Article  MathSciNet  MATH  Google Scholar 

  29. Wooters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature (London). 299, 802–803 (1982). https://doi.org/10.1038/299802a0

    Article  MATH  ADS  Google Scholar 

  30. Murao, M., et al.: Quantum telecloning and multiparticle entanglement. Phys. Rev. A. 59(1), 156 (1999). https://doi.org/10.1103/PhysRevA.59.156

    Article  MathSciNet  ADS  Google Scholar 

  31. Loock, P.V., Braunstein, S.L.: Telecloning of continuous quantum variables. Phys. Rev. Lett. 87(24), 247901 (2001). https://doi.org/10.1103/PhysRevLett.87.247901

    Article  MathSciNet  ADS  Google Scholar 

  32. Gisin, N., Massar, S.: Optimal quantum cloning machines. Phys. Rev. Lett. 79(11), 2153 (1957). https://doi.org/10.1103/PhysRevLett.79.2153

    Article  ADS  Google Scholar 

  33. Bruss, D., Ekurt, A., Macchiavello, C.: Optimal universal quantum cloning and state estimation. Phys. Rev. Lett. 81(12), 2598 (1998). https://doi.org/10.1103/PhysRevLett.81.2598

    Article  ADS  Google Scholar 

  34. Werner, R.F.: Optimal cloning of pure states. Phys. Rev. A. 58(3), 1827 (1998). https://doi.org/10.1103/PhysRevA.58.1827

    Article  ADS  Google Scholar 

  35. Zanardi, P.: Quantum cloning in d dimensions: Phys. Rev. A. 58(5), 3484 (1998). https://doi.org/10.1103/PhysRevA.58.3484

    Article  Google Scholar 

  36. Gurudka, A.: Quantum teleportation of qudits between many parties. acta physica slovaca. 54(4), 291–299 (2004) http://www.physics.sk/aps/pubs/2004/aps-2004-54-4-291.pdf

    Google Scholar 

  37. Wang, G., Ying, M.: Perfect many-to-one teleportation with stabilizer states. Phys. Rev. A. 77(3), 032324 (2008). https://doi.org/10.1103/PhysRevA.77.032324

    Article  ADS  Google Scholar 

  38. Hua, S.R., et al.: Controlled quantum perfect teleportation of multiple arbitrary multi-qubit states. Sci China. 54, 2208–2216 (2011). https://doi.org/10.1007/s11433-011-4558-8

    Article  Google Scholar 

  39. Li, W., Zha, X.W., Qi, J.X.: Tripartite quantum controlled teleportation via seven-qubit cluster state. Int. J. Theor. Phys. 55, 3927–3933 (2016). https://doi.org/10.1007/s10773-016-3022-y

    Article  MathSciNet  MATH  Google Scholar 

  40. Choudhary, B.S., Samanta, S.: Simultaneous perfect teleportation of three 2-qubit states. Quantum Inf. Process. 16, 230 (2017). https://doi.org/10.1007/s11128-017-1680-1

    Article  MathSciNet  MATH  ADS  Google Scholar 

  41. Zha, X.W., Miao, N.: Hierarchical controlled quantum teleportation. Mod. Phys. Lett. B. 33(29), 1950356 (2019). https://doi.org/10.1142/S0217984919503561

    Article  MathSciNet  ADS  Google Scholar 

  42. Briegel, H.J., Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86(5), 910 (2011). https://doi.org/10.1103/PhysRevLett.86.910

    Article  ADS  Google Scholar 

  43. Verma, V., Yadav, A.: Comment on “quantum controlled teleportation of bell state using seven-qubit entangled state”. Int. J. Theor. Phys. 60, 348–354 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikram Verma.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, V., Singh, R.S. Simultaneous Quantum Teleportation within a Quantum Network. Int J Theor Phys 61, 191 (2022). https://doi.org/10.1007/s10773-022-05177-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05177-9

Keywords

Navigation