Skip to main content
Log in

Kerr-Nonlinearity Enhanced Single Photon Blockade in Jaynes-Cummings Model

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We present a theoretical investigation of the single photon blockade effect in a driven qubit-cavity system with Kerr nonlinearity and dissipation. External fields drive both the cavity field and qubit. We calculated the equal time photon correlation functions and photon number distributions for different parameter domains of the system, including qubit-cavity detuning and found an enhancement of single photon blockade with Kerr nonlinearity irrespective of the domains. We propose a new measure for verifying single photon blockade in terms of correlation functions, and it is consistent with the criteria for photon blockade. The proposed scheme is more effective for the experimental realization of single photon sources using a qubit-cavity system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

References

  1. Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409(6816), 46–52 (2001)

    Article  ADS  Google Scholar 

  2. Jennewein, T., Barbieri, M., White, A.G.: Single-photon device requirements for operating linear optics quantum computing outside the post-selection basis. J. Mod. Opt. 58(3-4), 276–287 (2011)

    Article  ADS  MATH  Google Scholar 

  3. Kiraz, A., Atatüre, M., Imamoğlu, A.: Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing. Phys. Rev. A 69(3), 032305 (2004)

    Article  ADS  Google Scholar 

  4. Nielsen, M.A., Chuang, I.: Quantum computation and quantum information. American Association of Physics Teachers (2002)

  5. Lvovsky, A.I., Sanders, B.C., Tittel, W.: Optical quantum memory. Nat. Photon. 3(12), 706–714 (2009)

    Article  ADS  Google Scholar 

  6. Appel, J., Figueroa, E., Korystov, D., Lobino, M., Lvovsky, A.: Quantum memory for squeezed light. Phys. Rev. Lett. 100(9), 093602 (2008)

    Article  ADS  Google Scholar 

  7. Reim, K.F., Michelberger, P., Lee, K.C., Nunn, J., Langford, N.K., Walmsley, I.A.: Single-photon-level quantum memory at room temperature. Phys. Rev. Lett. 107, 053603 (2011). https://doi.org/10.1103/PhysRevLett.107.053603

    Article  ADS  Google Scholar 

  8. O’brien, J.L., Furusawa, A., Vučković, J.: Photonic quantum technologies. Nat. Photonics 3(12), 687–695 (2009)

    Article  ADS  Google Scholar 

  9. Boyd, R.W., Lukishova, S.G., Zadkov, V.N.: Quantum Photonics: Pioneering Advances and Emerging Applications. Springer Series in Optical Sciences, vol. 1. Springer (2019)

  10. Kwiat, P., Weinfurter, H., Herzog, T., Zeilinger, A., Kasevich, M.A.: Interaction-free measurement. Phys. Rev. Lett. 74(24), 4763 (1995)

    Article  ADS  Google Scholar 

  11. Khokhlov, D.: Interaction-free delayed-choice scenario. Optik 250, 168174 (2022)

    Article  ADS  Google Scholar 

  12. Guo-An-Yan, Y.-p. W., Hua-Lu: A single-photon switch with two quantum emitters in one-dimensional coupled-resonator waveguides. Int. J. Theor. Phys. 59 (2), 632–640 (2020)

    Article  MATH  Google Scholar 

  13. Kimble, H.J.: The quantum internet. Nature 453(7198), 1023–1030 (2008)

    Article  ADS  Google Scholar 

  14. Imamoğlu, A., Schmidt, H., Woods, G., Deutsch, M.: Strongly interacting photons in a nonlinear cavity. Phys. Rev. Lett. 79, 1467–1470 (1997). https://doi.org/10.1103/PhysRevLett.79.1467

    Article  ADS  Google Scholar 

  15. Hamsen, C., Tolazzi, K.N., Wilk, T., Rempe, G.: Two-photon blockade in an atom-driven cavity QED system. Phys. Rev. Lett. 118, 133604 (2017). https://doi.org/10.1103/PhysRevLett.118.133604

    Article  ADS  Google Scholar 

  16. Eisaman, M.D., Fan, J., Migdall, A., Polyakov, S.V.: Invited review article: Single-photon sources and detectors. Rev. Sci. Instrum. 82(7), 071101 (2011). https://doi.org/10.1063/1.3610677

    Article  ADS  Google Scholar 

  17. Li, A., Zhou, Y., Wang, X.-B.: Cascaded Kerr photon-blockade sources and applications in quantum key distribution. Sci. Rep. 7(1), 1–9 (2017)

    ADS  Google Scholar 

  18. Zhou, Y.H., Shen, H.Z., Yi, X.X.: Unconventional photon blockade with second-order nonlinearity. Phys. Rev. A 92, 023838 (2015). https://doi.org/10.1103/PhysRevA.92.023838

    Article  ADS  Google Scholar 

  19. Wu, Q. -C., Zhang, X. -Y., Wang, Y. -M., Liu, T., Zhou, Y. -H., Shen, H. -Z., Yang, C. -P.: Two-photon blockade with second-order nonlinearity in cavity systems. Int. J. Theor. Phys. 61(2), 1–8 (2022)

    Article  MATH  Google Scholar 

  20. Kerr-nonlinearity enhanced conventional photon blockade in a second-order nonlinear system

  21. Ferretti, S., Andreani, L.C., Türeci, H. E., Gerace, D.: Photon correlations in a two-site nonlinear cavity system under coherent drive and dissipation. Phys. Rev. A 82, 013841 (2010). https://doi.org/10.1103/PhysRevA.82.013841

    Article  ADS  Google Scholar 

  22. Sarma, B., Sarma, A.K.: Quantum-interference-assisted photon blockade in a cavity via parametric interactions. Phys. Rev. A 96, 053827 (2017). https://doi.org/10.1103/PhysRevA.96.053827

    Article  ADS  Google Scholar 

  23. Liao, Q., Wen, J., Deng, W.: Photon blockade in a hybrid double-cavity qed system. Int. J. Theor. Phys. 59(7), 1966–1977 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hartmann, M.J., Brandao, F.G., Plenio, M.B.: Strongly interacting polaritons in coupled arrays of cavities. Nat. Phys. 2(12), 849–855 (2006)

    Article  Google Scholar 

  25. Birnbaum, K.M., Boca, A., Miller, R., Boozer, A.D., Northup, T.E., Kimble, H.J.: Photon blockade in an optical cavity with one trapped atom. Nature 436(7047), 87–90 (2005)

    Article  ADS  Google Scholar 

  26. Li, M.-C., Chen, A. -X.: A photon blockade in a coupled cavity system mediated by an atom. Appl. Sci. 9(5), 980 (2019)

    Article  MathSciNet  Google Scholar 

  27. Zhou, YH, Minganti, F, Qin, W, Wu, Q-C, Zhao, J-L, Fang, Y-L, Nori, F, Yang, C-P: n-photon blockade with an n-photon parametric drive. n-photon blockade with an n-photon parametric drive. Phys Rev A 104, 053718 (2021). https://doi.org/10.1103/PhysRevA.104.053718

    Article  ADS  Google Scholar 

  28. Zhou, Y.H., Zhang, X.Y., Wu, QC, Ye, BL, Zhang, ZQ, Zou, DD, Shen, HZ, Yang, C-P: Conventional photon blockade with a three-wave mixing. Phys. Rev. A 102, 033713 (2020). https://doi.org/10.1103/PhysRevA.102.033713

    Article  ADS  Google Scholar 

  29. Hoffman, A.J., Srinivasan, S.J., Schmidt, S., Spietz, L., Aumentado, J., Türeci, H. E., Houck, A.A.: Dispersive photon blockade in a superconducting circuit. Phys. Rev. Lett. 107, 053602 (2011). https://doi.org/10.1103/PhysRevLett.107.053602

    Article  ADS  Google Scholar 

  30. Liu, Y.-x., Xu, X.-W., Miranowicz, A., Nori, F.: From blockade to transparency: Controllable photon transmission through a circuit-QED system. Phys. Rev. A 89, 043818 (2014). https://doi.org/10.1103/PhysRevA.89.043818

    Article  ADS  Google Scholar 

  31. Tang, J., Geng, W., Xu, X.: Quantum interference induced photon blockade in a coupled single quantum dot-cavity system. Sci. Rep. 5(1), 1–6 (2015)

    Google Scholar 

  32. Xie, H., Lin, G. -W., Chen, X., Chen, Z. -H., Lin, X. -M.: Single-photon nonlinearities in a strongly driven optomechanical system with quadratic coupling. Phys. Rev. A 93, 063860 (2016). https://doi.org/10.1103/PhysRevA.93.063860

    Article  ADS  Google Scholar 

  33. Rabl, P.: Photon Blockade Effect in Optomechanical Systems. Phys. Rev. Lett. 107, 063601 (2011). https://doi.org/10.1103/PhysRevLett.107.063601

    Article  ADS  Google Scholar 

  34. Liao, J. -Q., Nori, F.: Photon blockade in quadratically coupled optomechanical systems. Phys. Rev. A 88, 023853 (2013). https://doi.org/10.1103/PhysRevA.88.023853

    Article  ADS  Google Scholar 

  35. Wang, H., Gu, X., Liu, Y.-x., Miranowicz, A., Nori, F.: Tunable photon blockade in a hybrid system consisting of an optomechanical device coupled to a two-level system. Phys. Rev. A 92, 033806 (2015). https://doi.org/10.1103/PhysRevA.92.033806

    Article  ADS  Google Scholar 

  36. Flayac, H., Savona, V.: Unconventional photon blockade. Phys. Rev. A 96, 053810 (2017). https://doi.org/10.1103/PhysRevA.96.053810

    Article  ADS  Google Scholar 

  37. Zubizarreta Casalengua, E., López Carreño, J.C., Laussy, F.P., Valle, E.d.: Conventional and unconventional photon statistics. Laser & Photon. Rev. 14(6), 1900279 (2020)

    Article  ADS  Google Scholar 

  38. Miranowicz, A., Paprzycka, M., Liu, Y.-x., Bajer, J.c.v., Nori, F.: Two-photon and three-photon blockades in driven nonlinear systems. Phys. Rev. A 87, 023809 (2013). https://doi.org/10.1103/PhysRevA.87.023809

    Article  ADS  Google Scholar 

  39. Yuan, Z. -H., Wang, H. -F., Zhu, A.-D.: Controllable photon blockade in double-cavity optomechanical system with Kerr-type nonlinearity. Quantum Inf. Process 21(1), 1–13 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  40. Tang, J., Deng, Y., Lee, C.: Tunable photon blockade with a single atom in a cavity under electromagnetically induced transparency. Photonics Res. 9 (7), 1226–1233 (2021)

    Article  Google Scholar 

  41. Noh, C.: Emission of single photons in the weak coupling regime of the Jaynes Cummings model. Sci. Rep. 10, 1 (2020). https://doi.org/10.1038/s41598-020-72945

    Article  Google Scholar 

  42. Mahajan, S., Bhattacherjee, A.B.: Controllable nonlinear effects in a hybrid optomechanical semiconductor microcavity containing a quantum dot and Kerr medium. J. Mod. Opt. 66(6), 652–664 (2019). https://doi.org/10.1080/09500340.2018.1560510

    Article  ADS  Google Scholar 

  43. Wang, H., Gu, X., Liu, Y.-x., Miranowicz, A., Nori, F.: Tunable photon blockade in a hybrid system consisting of an optomechanical device coupled to a two-level system. Phys. Rev. A 92, 033806 (2015). https://doi.org/10.1103/PhysRevA.92.033806

    Article  ADS  Google Scholar 

  44. Zubizarreta Casalengua, E., López Carreño, J.C., Laussy, F.P., Valle, E.d.: Conventional and unconventional photon statistics. Laser Photon. Rev. 14(6), 1900279 (2020). https://doi.org/10.1002/lpor.201900279

    Article  ADS  Google Scholar 

  45. Carreño, J. C. L., Casalengua, E.Z., del Valle, E., Laussy, F.P.: Criterion for Single Photon Sources (2016) arXiv:1610.06126

  46. Snijders, H.J., Frey, J.A., Norman, J., Flayac, H., Savona, V., Gossard, A.C., Bowers, J.E., van Exter, M.P., Bouwmeester, D., Löffler, W.: Observation of the unconventional photon blockade. Phys. Rev. Lett. 121, 043601 (2018). https://doi.org/10.1103/PhysRevLett.121.043601

    Article  ADS  Google Scholar 

  47. Lin, H., Wang, X., Yao, Z., Zou, D.: Kerr-nonlinearity enhanced conventional photon blockade in a second-order nonlinear system. Opt Express (2020)

  48. Manosh, T.M., Ashefas, M., Thayyullathil, R.B.: Effects of Kerr medium in coupled cavities on quantum state transfer. J. Nonlinear Opt. Phys. Mater. 27(03), 1850035 (2018). https://doi.org/10.1142/S0218863518500352

    Article  ADS  Google Scholar 

  49. de J León-Montiel, R., Moya-Cessa, H.M.: Generation of squeezed Schrödinger cats in a tunable cavity filled with a Kerr medium. J. Opt. 17(6), 065202 (2015). https://doi.org/10.1088/2040-8978/17/6/065202

    Article  ADS  Google Scholar 

  50. Soto-Eguibar, F., Arrizon, V., niga-Segundo, A.Z., Moya-Cessa, H.M.: Optical realization of quantum Kerr medium dynamics. Opt. Lett. 39(21), 6158–6161 (2014). https://doi.org/10.1364/OL.39.006158

    Article  ADS  Google Scholar 

  51. Anwar, S.J., Ramzan, M., Usman, M., Khan, M.K.: Entanglement dynamics of three and four level atomic system under stark effect and Kerr-Like medium. Quant. Rep. 1(1), 23–36 (2019). https://doi.org/10.3390/quantum1010004

    Article  Google Scholar 

  52. Zhou, Y.H., Shen, H.Z., Zhang, X.Y., Yi, X.X.: Zero eigenvalues of a photon blockade induced by a non-Hermitian Hamiltonian with a gain cavity. Phys. Rev. A 97, 043819 (2018). https://doi.org/10.1103/PhysRevA.97.043819

    Article  ADS  Google Scholar 

  53. Noh, C.: Emission of single photons in the weak coupling regime of the Jaynes Cummings model. Sci. Rep. 10(1), 1–8 (2020)

    Article  MathSciNet  Google Scholar 

  54. Bartolo, N., Minganti, F., Casteels, W., Ciuti, C.: Exact steady state of a Kerr resonator with one- and two-photon driving and dissipation: Controllable Wigner-function multimodality and dissipative phase transitions. Phys. Rev. A 94, 033841 (2016). https://doi.org/10.1103/PhysRevA.94.033841

    Article  ADS  Google Scholar 

  55. Manzano, D.: A short introduction to the Lindblad master equation. AIP Adv. 10(2), 025106 (2020). https://doi.org/10.1063/1.5115323

    Article  ADS  Google Scholar 

  56. Moya-Cessa, H., Roversi, J.A., Dutra, S.M., Vidiella-Barranco, A.: Recovering coherence from decoherence: A method of quantum-state reconstruction. Phys. Rev. A 60, 4029–4033 (1999). https://doi.org/10.1103/PhysRevA.60.4029

    Article  ADS  Google Scholar 

  57. Moya-cessa, H., Dutra, S.M., Roversi, J.A., Vidiella-barranco, A.: Quantum state reconstruction in the presence of dissipation. J. Mod. Opt. 46(4), 555–558 (1999). https://doi.org/10.1080/09500349908231283

    Article  ADS  Google Scholar 

  58. Louisell, W.H.: Quantum Statistical Properties of Radiation. A Wiley-Interscience publication. Wiley (1973)

  59. Johansson, J.R., Nation, P.D., Nori, F.: QuTiP: An open-source Python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 183(8), 1760–1772 (2012). https://doi.org/10.1016/j.cpc.2012.02.021

    Article  ADS  Google Scholar 

  60. Johansson, J.R., Nation, P.D., Nori, F.: QuTiP 2: A Python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 184(4), 1234–1240 (2013). https://doi.org/10.1016/j.cpc.2012.11.019

    Article  ADS  Google Scholar 

  61. Liew, T.C.H., Savona, V.: Single photons from coupled quantum modes. Phys. Rev. Lett. 104, 183601 (2010). https://doi.org/10.1103/PhysRevLett.104.183601

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Author MA thank Centre of Excellence in Environment, Government Brennen College, Dharmadam, Thalassery for computational facility. MTM acknowledge KSCSTE and CSIR for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.H. Muhammed Ashefas.

Ethics declarations

Conflict of Interests

The authors declare no conflicts of interest

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashefas, C.M., Manosh, T.M. & Thayyullathil, R.B. Kerr-Nonlinearity Enhanced Single Photon Blockade in Jaynes-Cummings Model. Int J Theor Phys 61, 186 (2022). https://doi.org/10.1007/s10773-022-05173-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05173-z

Keywords

Navigation