Skip to main content
Log in

Finite-Size Effects Near QCD Critical Point: Quark Number Susceptibility

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

To extract the critical exponents characterizing the scaling behavior of the deconfinement phase transition, at the thermodynamic limit, we study the finite-size effects of the density driven deconfinement phase transition in quantum chromo-dynamics (QCD) by using a numerical finite-size scaling analysis (FSS). To this end, a coexistence model of the hadronic and color-singlet quark gluon plasma (QGP) phases is utilized, in which an MIT bag model is adopted to count for the first-order phase transition, at large density. We focus this study on the quark number susceptibility (QNS), which provides relevant information about orders of the phase transitions. By calculating the critical exponents related to QNS on the entire range of quark chemical potentials, at fixed temperature, the orders of the phase transitions could be determined. We conclude that our results are compatible with the first-order phase transition and agree very well with the predictions of other FSS approaches and with the statistical models as well as with the lattice QCD simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bzdak, A., et al.: Phys. Rep. 853, 1 (2020)

    Article  ADS  Google Scholar 

  2. Fukushima, K., Mohanty, B., Xu, N.: AAPPS Bull. 31, 1 (2020)

    Google Scholar 

  3. Chatrchyan, S., Khachatryan, V., Sirunyan, A. M., Tumasyan, A., Adam, W., Bergauer, T., ... & Chen, G. M. Observation and studies of jet quenching in Pb-Pb collisions at \(\sqrt{\mathrm{S}_{\text{NN}}} = 2.76\) TeV. Phys. Rev. C 84(2), 024906 (2011). https://doi.org/10.1103/PhysRevC.84.024906

  4. Adam, J., et al.: ALICE Collaboration. Nat. Phys. 13, 535 (2017)

    Article  Google Scholar 

  5. The CMS collaboration., Chatrchyan, S., Khachatryan, V. et al. Search for quark compositeness in dijet angular distributions from pp collisions at \(\sqrt{\mathrm{s}} = 7\) TeV. J. High Energ. Phys. 2012, 55 (2012). https://doi.org/10.1007/JHEP05(2012)055

  6. Aamodt, K., Abelev, B., Quintana, A. A., Adamova, D., Adare, A. M., Aggarwal, M. M., ... & Cheynis, B. Higher harmonic anisotropic flow measurements of charged particles in Pb-Pb collisions at \(\sqrt{\mathrm{S}_{\text{NN}}} = 2.76\) TeV. Phys Rev Lett 107(3), 032301 (2011). https://doi.org/10.1103/PhysRevLett.107.032301

  7. Niida, T., Miake, Y.: AAPPS Bull. 31, 12 (2021)

    Article  Google Scholar 

  8. Stephanov, M.A.: Phys. Rev. Lett. 102, 032301 (2009). https://doi.org/10.1103/PhysRevLett.102.032301

    Article  ADS  Google Scholar 

  9. Stephanov, M. A.: The phase diagram of QCD and the critical point. Acta Phys. Pol. B 35, 2939 (2004)

  10. Stephanov, M.A., Rajagopal, K., Shuryak, E.V.: Phys. Rev. Lett. 81, 4816 (1998). https://doi.org/10.1103/PhysRevLett.81.4816

    Article  ADS  Google Scholar 

  11. Karsch, F., et al.: Nucl. Phys. B 605, 579 (2001). https://doi.org/10.1016/S0550-3213(01)00200-0

    Article  ADS  Google Scholar 

  12. Hatta, Y., Stephanov, M.A.: Phys. Rev. Lett. 91, 102003 (2003). https://doi.org/10.1103/PhysRevLett.91.102003

    Article  ADS  Google Scholar 

  13. Schaefer, B.J., Wambach, J.: Phys. Rev. D 75, 085015 (2007). https://doi.org/10.1103/PhysRevD.75.085015

    Article  ADS  Google Scholar 

  14. Asakawa, M., Heinz, U., Muller, B.: Phys. Rev. Lett. 85, 2072 (2000). https://doi.org/10.1103/PhysRevLett.85.2072

    Article  ADS  Google Scholar 

  15. Blaizot, J.P., Iancu, E., Rebhan, A.: Phys. Lett. B 523, 143 (2001). https://doi.org/10.1016/S0370-2693(01)01316-8

    Article  ADS  Google Scholar 

  16. Ladrem, M., Ait-El-Djoudi, A.: Eur. Phys. J. C 44, 257 (2005). https://doi.org/10.1140/epjc/s2005-02357-y

    Article  ADS  Google Scholar 

  17. Zhao, Y.-P., Zhang, R.-R., Zhang, H., Zong, H.-S.: Chin. Phys. C 43, 034101 (2019)

    Article  ADS  Google Scholar 

  18. Palhares, L.F., Fraga, E.S., Kodama, T.: J. Phys. G 38, 085101 (2011)

    Article  ADS  Google Scholar 

  19. Basset, S.A., et al.: Prog. Part. Nucl. Phys. 42, 313 (1999)

    Article  ADS  Google Scholar 

  20. Fisher, M.E., Barber, M.N.: Phys. Rev. Lett. 28, 1516 (1972). https://doi.org/10.1103/PhysRevLett.28.1516

    Article  ADS  Google Scholar 

  21. Spieles, C., Bleicher, M., Greiner, C.: J. Phys. G:Nucl. Part. Phys. 46, 025101 (2019). https://doi.org/10.1088/1361-6471/aaf82f

    Article  ADS  Google Scholar 

  22. H.-T. Elze et al., Z. Phys. C 24, 361 (1984).https://doi.org/10.1007/BF01410375

  23. Turko, L.: Phys. Lett. B 104, 153 (1981). https://doi.org/10.1016/0370-2693(81)90579-7

    Article  MathSciNet  ADS  Google Scholar 

  24. Spieles, C., Stocker, H., Greiner, C.: Phys. Rev. C 57, 908 (1998). https://doi.org/10.1103/PhysRevC.57.908

    Article  ADS  Google Scholar 

  25. Neergaard, G., Madsen, J.: Phys. Rev. D 60, 054011 (1999). https://doi.org/10.1103/PhysRevD.60.054011

    Article  ADS  Google Scholar 

  26. E. S. Fraga, QCD under extreme conditions: an informal discussion (2013) Preprint 1310.6656 [hep-ph].

  27. Philipsen, O.: Prog. Part. Nucl. Phys. 70, 55 (2013)

    Article  ADS  Google Scholar 

  28. Yagi, K., Hatsuda, T., Miake, Y.: Quark-Gluon Plasma. Cambridge Univ. Press, Cambridge (2005)

  29. Elze, H-Th, W. Greiner, and Johann Rafelski.: On the colorsinglet quark-glue plasma. Phys. Lett. B 124.6, 515-519 (1983)

  30. Elze, H.-T., et al.: Phys. Rev. A 33, 1879 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  31. Balian, R., Bloch, C.: Ann. Phys. 60, 401 (1970)

    Article  ADS  Google Scholar 

  32. Zakout, I., Greiner, C.: The quark-gluon-plasma phase transition diagram, Hagedorn matter and quark-gluon liquid (2010). arXiv:1002.3119 [nucl-th]

  33. He, M., Li, J.F., Sun, W.M., Zong, H.S.: Phys. Rev. D 79, 036001 (2009). https://doi.org/10.1103/PhysRevD.79.036001

    Article  ADS  Google Scholar 

  34. Basu, S., Chatterjee, S., Chatterjee, R., Nayak, T.K., Nandi, B.K.: Phys. Rev. C 94, 044901 (2016). https://doi.org/10.1103/PhysRevC.94.044901

    Article  ADS  Google Scholar 

  35. Spieles, C., Bleicher, M., Greiner, C.: Astron. Nachr. 340, 866 (2019). https://doi.org/10.1002/asna.201913704

    Article  ADS  Google Scholar 

  36. Singh, C.P., Srivastava, P.K., Tiwari, S.K.: Phys. Rev. D 80, 114508 (2009). https://doi.org/10.1103/PhysRevD.80.114508

    Article  ADS  Google Scholar 

  37. Magdy, N., Csand, M., Lacey, R.A.: J. Phys. G 44, 025101 (2017). https://doi.org/10.1088/1361-6471/44/2/025101

    Article  ADS  Google Scholar 

  38. Griffiths, R.B., Wheeler, J.: Phys. Rev. A 2, 1047 (1970). https://doi.org/10.1103/PhysRevA.2.1047

    Article  ADS  Google Scholar 

  39. Fisher, M.E., Berker, A.N.: Phys. Rev. B 26, 2507 (1982). https://doi.org/10.1103/PhysRevB.26.2507

    Article  ADS  Google Scholar 

  40. Privman, V., Fischer, M.E.: J. Stat. Phys. 33(2), 385 (1983)

    Article  ADS  Google Scholar 

  41. Challa, M.S., Landau, D.P., Binder, K.: Phys. Rev. B 34, 1841 (1986). https://doi.org/10.1103/PhysRevB.34.1841

    Article  ADS  Google Scholar 

  42. Binder, K., Heermann, D.W.: Monte Carlo Simulations in Statistical Physics, 2nd edn., pp. 69–113. Springer, Berlin, Verlag (2002). https://doi.org/10.1007/978-3-662-04685-2_3

    Book  MATH  Google Scholar 

  43. Meyer-Ortmanns, H.: Rev. Mod. Phys. 68, 473 (1996). https://doi.org/10.1103/RevModPhys.68.473

    Article  ADS  Google Scholar 

  44. Fukugita, M., et al.: Numerical evidence for a first-order chiral phase transition in lattice QCD with two light flavors. Phys. Rev. Lett. 58.24, 2515 (1987). https://doi.org/10.1103/PhysRevLett.58.2515

  45. Fukugita, M.: Lattice’88. Nucl. Phys. B (Proc. Suppl). 9, 291 (1989)

  46. Henkel, M.: Conformal invariance and critical phenomena. In: Texts and Monographs in Physics. Springer, Verlag (1999)

  47. Zakout, I., Greiner, C., Schaffner-Bielich, J.: Nucl. Phys. A 781, 150 (2007). https://doi.org/10.1016/j.nuclphysa.2006.10.064

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research work is supported by the Algerian Ministry of Higher Education and Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ait El Djoudi.

Ethics declarations

Conflict of Interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moussaoui, B., Ait El Djoudi, A. & Tawfik, A. Finite-Size Effects Near QCD Critical Point: Quark Number Susceptibility. Int J Theor Phys 61, 181 (2022). https://doi.org/10.1007/s10773-022-05159-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05159-x

Keywords

Navigation