Skip to main content
Log in

The Minimally Coupled and Canonical Scalar Field Inflationary Cosmology with Negative Quadratic and Modified Higgs-like Potentials: A Symmetry Based Approach

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The inflationary model based on a single scalar field with a quadratic potential \(V(\phi )\sim \phi ^{2}\) is disfavored by the recent Planck constraints on the values of scalar spectral index, and the tensor-to-scalar ratio for cosmological density perturbations. In order to overcome the discrepancies we study the scalar field equations based on the minimally coupled and canonical Lagrangian densities with negative quadratic potential and modified Higgs-like potential. We use a Lie symmetry-based approach to study the homogeneous scalar field equations for both cases. In particular, we have investigated the Lie symmetries of the scalar field equations and use them to find the exact analytical solutions. New exact analytical solution is obtained for an inflationary model with the modified Higgs-like potential. We have calculated the values of the inflationary parameters, namely the amplitude of scalar power-spectrum \((\mathcal {P}_{S})\), scalar spectral index (nS), its running (nSrun), tensor-to-scalar ratio (r) and non-Gaussinity parameters. We make useful checks whether the obtained parameters are supported by the observational constraints set by the Planck2018 data. We find that the model equation with negative quadratic potential is disfavored by the recent Planck2018 constraints on the tensor-to-scalar ratio for cosmological density perturbations but the scalar field model equation with the modified Higgs-like potential resolves the problem. We have predicted the values of Higgs self-coupling constant (λ) that lies within the \(3.924\times 10^{-14}\lesssim \lambda \lesssim 6.56\times 10^{-14}\) and also the values of vacuum expectation value of the scalar inflaton field lies in the range \(17.17\lesssim \phi _{0}\lesssim 23.54\) which give best fit the Planck2018 measured range of the scalar spectral index nS and upper bound of tensor-to-scalar ratio r. The small value of λ indicates that the inflaton field is extremely weakly coupled and gives the necessary condition for successful inflation. The values of tensor-to-scalar ratio and all the other important observable indices obtained using the model with the modified Higgs-like potential lie well inside the limits set in by the Planck2018 data. But we have checked that both the models generate very small values of non-Gaussianity parameters. We also explain the exit from the inflationary phase in both the cases successfully.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Weinberg, S.: Cosmology. Oxford University Press Inc, New York (2008)

    MATH  Google Scholar 

  2. Rocher, J., Sakellariadou, M.: . J. Cosmol. Astropart. Phys. 03, 004 (2005)

    Article  ADS  Google Scholar 

  3. Guth, A.H.: . Phys. Rev. D 23, 347 (1981)

    Article  ADS  Google Scholar 

  4. Kolb, E.W., Turner, M.S.: The Early Universe. Addison-Wesley, New York (1990)

    MATH  Google Scholar 

  5. Bairagi, M., Choudhuri, A.: . Eur. Phys. J. Plus 133, 545 (2018)

    Article  Google Scholar 

  6. Maartens, R., Taylor, D.R., Roussos, N.: . Phys. Rev. D 52, 3358 (1995)

    Article  ADS  Google Scholar 

  7. Linde, A.D.: . Phys. Lett. B 108, 389 (1982)

    Article  ADS  Google Scholar 

  8. Albrecht, A., Steinhardt, P.: . Phys. Rev. Lett. 48, 1220 (1982)

    Article  ADS  Google Scholar 

  9. Coleman, S., Weinberg, S.: . Phys. Rev. D 7, 1888 (1973)

    Article  ADS  Google Scholar 

  10. Linde, A.D.: . Phys. Lett. B 129, 177 (1983)

    Article  ADS  Google Scholar 

  11. Kolb, E.W.: First-order inflation. FNAL-CONF-90/195 (1990)

  12. Dodelson, S.: Modern Cosmology. Academic Press, San Diego (2003)

    Google Scholar 

  13. Mukhanov, V.F.: Physical Foundations of Cosmology. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  14. Turner, M.S.: . Acta Phys. Polon. B18, 813 (1987)

    ADS  Google Scholar 

  15. Kallosh, R., Linde, A.: arXiv:1909.04687v2 [hep-th] 26 Sep (2019)

  16. Guth, A.H., Kaiser, D.I., Nomura, Y.: . Phys. Lett. B 733, 112 (2014)

    Article  ADS  Google Scholar 

  17. Halliwell, J.J.: . Phys. Lett. B 185, 341 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  18. Tsamparlis, M., Paliathanasis, A.: . Gen. Rel. Grav. 42, 2957 (2010)

    Article  ADS  Google Scholar 

  19. Tsamparlis, M., Paliathanasis, A.: . J. Phys. A 44, 175202 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  20. Szydlowski, M., Hrycyna, O., Stachowski, A.: . IJGMMP 11, 1460012 (2014)

    Google Scholar 

  21. Fedler, G., Frolov, A., Kofman, L., Linde, A.D.: Cosmology with Negative potentials. Phys. Rev. D 66, 023507 (2002). arXiv:0202017

    Article  MathSciNet  ADS  Google Scholar 

  22. Ellis, J., Fairbairn, M., Sueiroa, M.: . JCAP 02, 044 (2014)

    ADS  Google Scholar 

  23. Urena-Lopez, L.A., Reyes-Ibarra, M.J.: . Int. J. Mod. Phys. D 18, 621 (2009)

    Article  ADS  Google Scholar 

  24. Urena-Lopez, L.A.: . J. Phys.: Conf. Ser. 761, 012076 (2016)

    Google Scholar 

  25. Oda, I., Tomoyose, T.: . Adv. Studies Theor. Phys. 8, 551 (2014)

    Article  Google Scholar 

  26. Harigayaa, K., Ibe, M., Kawasaki, M., Yanagida, T.T.: . Phys. Lett. B 756, 113 (2016)

    Article  ADS  Google Scholar 

  27. Wen-Fu, W.: . Chin. Phys. Lett. 20, 593 (2003)

    Article  ADS  Google Scholar 

  28. Steinhardt, P.J., Turok, N.: arXiv:0111030 (2020)

  29. Komatsu, E., et al: arXiv:1001.4538 [astro-ph.CO] (2020)

  30. Linde, A.D.: arXiv:1402.0526v2 [hep-th] 9 Mar (2014)

  31. Okada, N., Rehman, M.U., Sha, Q.: . Phys. Rev. D 82, 043502 (2010). arXiv:1005.5161 [hep-ph]

    Article  ADS  Google Scholar 

  32. Fomin, I.V., Chervon, S.V.: . J. Phys. Conf. Ser. 1557, 012020 (2020)

    Article  Google Scholar 

  33. Aad, G., et al: [ATLAS Collaboration]. Phys. Lett. B 716, 1 (2012). arXiv:1207.7214 [hep-ex]

    Article  ADS  Google Scholar 

  34. Chatrchyan, S., et al: [CMS Collaboration]. Phys. Lett. B 716, 30 (2012). arXiv:1207.7235 [hep-ex]

    Article  ADS  Google Scholar 

  35. Linde, A.: arXiv:1710.04278v1 [hep-th] 11 Oct (2017)

  36. Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer, New York (1993)

    Book  MATH  Google Scholar 

  37. Stephani, H. In: MacCallum, M. (ed.) : Differential Equations: Their Solution Using Symmetries. Cambridge, Cambridge University Press (1990)

  38. Bluman, G.W., Kumei, S.: Symmetries and Differential Equations. Springer, New York (1989)

    Book  MATH  Google Scholar 

  39. Choudhuri, A.: . Physica Scripta 90, 055004 (2015)

    Article  Google Scholar 

  40. Andriopoulos, K., Leach, P.G.L.: . Cent. Eur. J. Phys. 6, 469 (2008)

    Google Scholar 

  41. Choudhuri, A., Ganguly, A.: . Found. Phys. 1, 49 (2019)

    Google Scholar 

  42. Ganguly, A., Choudhuri, A.: . Gravity and Cosmology 26, 228 (2020)

    Article  ADS  Google Scholar 

  43. Chervon, S.V., Fomin, I.V., Beesham, A.: . Eur. Phys. J. C 78, 301 (2018)

    Article  ADS  Google Scholar 

  44. Ivanov, G.G., Chervon, S.V., Khapaeva, A.V.: . Space, Time and Fundamental Interactions 3, 66 (2020)

    Google Scholar 

  45. Muslimov, A.G.: . Class. Quant. Grav. 7, 231 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  46. Lucchin, F., Matarrese, S.: . Phys. Rev. D 32, 1316 (1985)

    Article  ADS  Google Scholar 

  47. Ellis, G.F.R., Madsen, M.S.: . Class. Quant. Grav. 8, 667 (1991)

    Article  ADS  Google Scholar 

  48. Barrow, J.D.: . Phys. Lett. B 187, 12 (1987)

    Article  ADS  Google Scholar 

  49. Bairagi, M., Choudhuri, A.: . Gravit. Cosmol. 26, 326 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  50. Bairagi, M., Choudhuri, A.: . Gen. Relativ. Gravit. 53, 1 (2021)

    Article  Google Scholar 

  51. Akrami, Y., et al.: Planck 2018 results. X. Constraints on inflation arXiv:1807.06211v1 [astro-ph.CO] 17 Jul (2018)

  52. Choudhuri, A.: Nonlinear evolution equations: lagrangian approach LAP LAMBERT academic publishing (2011)

  53. Bassett, B.A., Tsujikawa, S., Wands, D.: . Rev. Mod. Phys. 78, 537 (2006)

    Article  ADS  Google Scholar 

  54. Freese, K., Frieman, J.A., Orinto, A.V.: . Phys. Rev. Lett. 65, 3233 (1990)

    Article  ADS  Google Scholar 

  55. Coone, D., Roest, D., Vennin, V.: . JCAP 1511, 010 (2015). arXiv:1507.00096

    Article  ADS  Google Scholar 

  56. Schwarz, D.J., Terrero-Escalante, C.A., Garcia, A.A.: . Phys. Lett. B 517, 243 (2001). arXiv:0106020

    Article  ADS  Google Scholar 

  57. Baumann, D.: The Physics of Inflation ICTS course (2011)

  58. Riotto, A.: Inflation and the Theory of Cosmological Perturbations. arXiv:0210162 (2002)

  59. Croon, D., Gonzalo, T.E., Graf, L., Košnik, N., White, G.: . Frontiers in Physics 7, 1 (2019)

    Article  Google Scholar 

  60. Jimenez, J.B., Musso, M., Ringeval, C.: . Phys. Rev. D 88, 043524 (2013). arXiv:1303.2788 [astro-ph.CO]

    Article  ADS  Google Scholar 

  61. Wagenaa, L.: Inflation, Quantum Fluctuations and Gravitational Waves. University of Amsterdam, Thesis (2016)

  62. Kosowsky, A., Turner, M.S.: . Phys. Rev. D 52, 1739 (1995)

    Article  ADS  Google Scholar 

  63. Maldacena, J.: . JHEP 0305, 013 (2003)

    Article  ADS  Google Scholar 

  64. Komatsu, E., Spergel, D.N.: . Phys. Rev. D 063002, 63 (2001)

    Google Scholar 

  65. Asadi, K., Nozari, K.: The size of local bispectrum and trispectrum in a Non-Minimal inflation, nucl. Phys. B 934, 118 (2018)

    MathSciNet  MATH  Google Scholar 

  66. Byrnes, C.T., Sasaki, M., Wands, D.: Primordial trispectrum from inflation. Phys. Rev. D 74, 123519 (2006). arXiv:0611075

    Article  ADS  Google Scholar 

  67. Bunn, E.F., Liddle, A.R., White, M.J.: . Phys. Rev. D 54, R5917 (1996)

    Article  ADS  Google Scholar 

  68. Barry, D.J., Culligen-Hensley, P.J., Barry, S.J.: Real Values of the W Function. ACM Trans. Math. Software 21, 161–171 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  69. Guth, A.: . Proc. Natl. Acad. Sci. USA 90, 4871 (1993)

    Article  ADS  Google Scholar 

  70. Chakravarty, G.K., Das, S., Lambiase, G., Mohanty, S.: . Phys. Rev. D 94, 023521 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AC acknowledges UGC, The Government of India, for financial support through Project No.F.30-302/2016(BSR).

Corresponding author

Correspondence to Amitava Choudhuri.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhuri, A., Bairagi, M. The Minimally Coupled and Canonical Scalar Field Inflationary Cosmology with Negative Quadratic and Modified Higgs-like Potentials: A Symmetry Based Approach. Int J Theor Phys 61, 158 (2022). https://doi.org/10.1007/s10773-022-05146-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05146-2

Keywords

Navigation