Skip to main content
Log in

Authenticated QKD Based on Orthogonal States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

A Correction to this article was published on 25 July 2022

This article has been updated

Abstract

As is known, quantum key distribution (QKD) can theoretically realize information-theoretic security with a reliable identity authentication protocol. However, the most commonly used identity authentication protocol based on public-key cryptography cannot resist the attacks from the adversaries with the ability of quantum computing, so quantum identity authentication (QIA) is one of the alternatives to be considered. By adjusting the length of interference circuit, we propose a QIA protocol based on the communication circuit of GV95 protocol and prove its security in theory. On this basis, an authenticated QKD protocol based on orthogonal-state-encoding is designed by mixing the process of QKD and QIA randomly. Compared with a similar protocol proposed in 2020, our protocol is simpler and requires less quantum communication equipment. Therefore, both the cost and difficulty of implementing our protocol is lower than the previous protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

References

  1. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441 (2000)

    Article  ADS  Google Scholar 

  2. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. arXiv:2003.06557 (2020)

  3. Ekert, A.K.: Quantum Cryptography and Bells Theorem[M]//Quantum Measurements in Optics, pp 413–418. Springer, Boston (1992)

    Book  Google Scholar 

  4. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  5. Goldenberg, L., Vaidman, L.: Quantum cryptography based on orthogonal states. Phys. Rev. Lett. 75(7), 1239 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  6. Sun, Y., Wen, Q.Y., Gao, F., et al.: Robust variations of the Bennett-Brassard 1984 protocol against collective noise. Phys. Rev. A 80(3), 032321 (2009)

    Article  ADS  Google Scholar 

  7. Song, T.T., Wen, Q.Y., Guo, F.Z., et al: Finite-key analysis for measurement-device-independent quantum key distribution. Phys. Rev. A 86(2), 022332 (2012)

    Article  ADS  Google Scholar 

  8. Lin, S., Guo, G.D., Gao, F., et al.: Quantum key distribution: defeating collective noise without reducing efficiency. Quantum Inf. Comput. 14 (9&10), 845–856 (2014)

    MathSciNet  Google Scholar 

  9. Li, Y.B.: Analysis of counterfactual quantum key distribution using error-correcting theory. Quantum Inf. Process. 13(10), 2325–2342 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  10. Richard, C., Daniel, G., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett 83, 648–651 (1999)

    Article  Google Scholar 

  11. Yang, Y.G., Wen, Q., Zhang, X.: Multiparty simultaneous quantum identity authentication with secret sharing. Sci. China Series G Phys. Mech. Astron. 51(3), 321–327 (2008)

    Article  ADS  Google Scholar 

  12. Qina, S.J., Gao, F., Wen, Q.Y., et al.: Security of quantum secret sharing with two-particle entanglement against individual attacks. Quantum Inf. Comput. 9(9), 765–772 (2009)

    MathSciNet  MATH  Google Scholar 

  13. Wang, Q., Yu, C., Li, Y., et al.: Authenticated quantum sortition and application in “Picking at random” problems. IEEE Commun. Lett. 25 (2), 518–522 (2020)

    Article  Google Scholar 

  14. Lin, S., Wen, Q.Y., Qin, S.J., et al.: Multiparty quantum secret sharing with collective eavesdropping-check. Opt. Commun. 282(22), 4455–4459 (2009)

    Article  ADS  Google Scholar 

  15. Xu, G.B., Jiang, D.H.: Novel methods to construct nonlocal sets of orthogonal product states in an arbitrary bipartite high-dimensional system. Quantum Inf. Process 20(4), 1–38 (2021)

    ADS  MathSciNet  Google Scholar 

  16. Wang, T.Y., Wen, Q.Y.: Security of a kind of quantum secret sharing with single photons. Quant. Inf. Comput. 11(5), 434–443 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  18. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)

    Article  ADS  Google Scholar 

  19. Wang, Q., Li, Y., Yu, C., et al.: Quantum-based anonymity and secure veto. Quantum Inf. Process 20(3), 1–22 (2021)

    ADS  MathSciNet  Google Scholar 

  20. Deng, F.G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 68(4), 042315 (2003)

    Article  ADS  Google Scholar 

  21. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89(18), 187902 (2002)

    Article  ADS  Google Scholar 

  22. Lin, S., Wen, Q.Y., Gao, F., et al: Quantum secure direct communication with χ-type entangled states. Phys. Rev. A, 7(6), 064304 (2008)

    Article  ADS  Google Scholar 

  23. Gao, F., Qin, S.J., Wen, Q.Y., et al.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger–Horne–Zeilinger state. Opt. Commun. 283(1), 192–195 (2010)

    Article  ADS  Google Scholar 

  24. Huang, W., Wen, Q-Y, Jia, H-Y, Qin, S-J, Gao, F.: Fault tolerant quantum secure direct communication with quantum encryption against collective noise. Chinese Phys. B 21(10) (2012)

  25. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum private queries. Phys. Rev. Lett. 100(23), 230502 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  26. Jakobi, M., Simon, C., Gisin, N., et al: Practical private database queries based on a quantum-key-distribution protocol. Phys. Rev. A 83(2), 022301 (2011)

    Article  ADS  Google Scholar 

  27. Gao, F., Liu, B., Huang, W., et al.: Postprocessing of the oblivious key in quantum private query. IEEE J. Sel. Top. Quantum Electron. 21(3), 98–108 (2014)

    Article  ADS  Google Scholar 

  28. Liu, B., Gao, F., Huang, W., et al.: QKD-Based quantum private query without a failure probability. Sci. China Phys. Mech. Astron. 58(10), 1–6 (2015)

    Article  Google Scholar 

  29. Wei, C.Y., Cai, X.Q., Liu, B., et al.: A generic construction of quantum-oblivious-key-transfer-based private query with ideal database security and zero failure. IEEE Trans. Comput. 67(1), 2–8 (2017)

    Article  MathSciNet  Google Scholar 

  30. Liu, B., Xia, S., Xiao, D., et al.: Decoy-state method for quantum-key-distribution-based quantum private query. Sci. China Phys. Mech. Astron. 65(4), 1–8 (2022)

    Article  Google Scholar 

  31. Wegman, M.N., Carter, J.L.: New hash functions and their use in authentication and set equality. J. Comput. Syst. Sci. 22(3), 265–279 (1981)

    Article  MathSciNet  Google Scholar 

  32. Dušek, M, Haderka, O., Hendrych, M., et al.: Quantum identification system. Phys. Rev. A 60(1), 149 (1999)

    Article  ADS  Google Scholar 

  33. Goldenberg, L., Vaidman, L.: Quantum cryptography based on orthogonal states. Phys. Rev. Lett. 75(7), 1239 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  34. Liu, B., Gao, Z., Xiao, D., et al.: Quantum identity authentication in the orthogonal-state-encoding QKD system. Quantum Inf. Process 18(5), 1–16 (2019)

    MathSciNet  Google Scholar 

  35. Hou, F., Zhou, Q., Jin, Z., et al.: Authenticated QKD protocol based on Single-Photon interference. IEEE Access 8, 135357–135370 (2020)

    Article  Google Scholar 

Download references

Funding

This work is supported by National Natural Science Foundation of China (Grant Nos 62171418, U19A2076, 61901425, 61702061), Natural Science Foundation of Chongqing, China (Grant Noscstc220jcyj-msxmX0719), National Science Key Lab Fund project(Grant Nos 6142103200105), Fundamental Research Funds for the Central Universities (Grant Nos. 2020CDJQY-A018, 2020CDJ-LHZZ-056), Sichuan Science and Technology Program (Grant2019JDJQ0060).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to study conception and design. Qiaoling Xiong, Fen Hou and Bin Liu completed the design of QIA and QKD protocols. Bin Liu, Wei Huang, Bingjie Xu and Yang Li completed the security analysis of protocols. And Qiaoling Xiong and Fen Hou co-wrote this paper. All authors read and proved the final manuscript.

Corresponding author

Correspondence to Bin Liu.

Ethics declarations

Conflict of Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The department of the authors of Bin Liu, Wei Huang, Bingjie Xu and Yang Li are wrong in the online published version. Bin Liu‘s department should be affiliations 1 and 2, and Wei Huang's, Bingjie Xu's and Yang Li's should be 2.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, Q., Fen, H., Liu, B. et al. Authenticated QKD Based on Orthogonal States. Int J Theor Phys 61, 151 (2022). https://doi.org/10.1007/s10773-022-05140-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05140-8

Keywords

Navigation