Skip to main content
Log in

Quantum Digital Signature with Continuous-Variable

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

This paper presents a new continuous-variable quantum digital signature (CV-QDS) protocol which is more compatible with proven optical telecommunication technology and photon detector. In many current CV-QDS protocols, both quantum signals and the local oscillator are created starting with the same laser, propagating through the channel. However, the local oscillator setup may cause security problems to CV-QDS protocol. Therefore, we propose to exploit the pilot-aided feedforward data recovery scheme to solve this obstacle. Based on the reference pulse measurement, receivers can estimate and compensate for the phase drift of the quantum signal while avoiding the necessity of the transmitted local oscillator. Security analysis indicates that the protocol proposed in this paper is resistant to repudiation attack and forgery attack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hoffmann, L., Diffie, W., Hellman, M.: Finding new directions in cryptography. Commun. ACM. 59(6) (2016)

  2. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM. 21(2), 120–126 (1978)

    Article  MathSciNet  Google Scholar 

  3. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen ciphertext attacks. SIAM J. Comput. 17(2), 281–308 (1988)

    Article  MathSciNet  Google Scholar 

  4. Yen, S.M., Laih, C.S.: New digital signature scheme based on discrete logarithm. Electron. Lett. 29(12), 1120–1121 (1993)

    Article  ADS  Google Scholar 

  5. Micali, S., Reyzin, L.: Improving the exact security of digital signature schemes. J. Cryptol. 15(1), 1–18 (2002)

    Article  MathSciNet  Google Scholar 

  6. Lu, C.S., Liao, H.Y.: Structural digital signature for image authentication: An incidental distortion resistant scheme. IEEE T. Multimedia. 5(2), 161–173 (2003)

    Article  Google Scholar 

  7. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  8. Zhang, H., An, X.B., Zhang, C.H., Zhang, C.M., Wang, Q.: High-efficiency quantum digital signature scheme for signing long messages. Quantum Inf. Process. 18(1), 1–9 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  9. Chen, F.L., Liu, W.F., Chen, S.G., Wang, Z.H.: Public-key quantum digital signature scheme with one-time pad private-key. Quantum Inf. Process. 17(1), 10 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  10. Yin, H.L., Fu, Y., Chen, Z.B.: Practical quantum digital signature. Phys. Rev. A. 93(3), 032316 (2016)

    Article  ADS  Google Scholar 

  11. Clarke, P.J., Collins, R.J., Dunjko, V., Andersson, E., Jeffers, J., Buller, G.S.: Experimental demonstration of quantum digital signatures using phase-encoded coherent states of light. Nat. Commun. 3(1), 1–8 (2012)

    Article  Google Scholar 

  12. Gottesman, D., Chuang, I.L.: Quantum digital signatures. arXiv:quant-ph/0105032 (2001)

  13. Zhang, G., Haw, J.Y., Cai, H., Xu, F., Assad, S.M., Fitzsimons, J.F., Zhou, X., Zhang, Y., Yu, S., Wu, J., Ser, W., Kwek, L.C., Liu, A.Q.: An integrated silicon photonic chip platform for continuous-variable quantum key distribution. Nat. Photonics. 13(12), 839–842 (2019)

    Article  ADS  Google Scholar 

  14. Liao, S.K., Cai, W.Q., Liu, W.Y., Zhang, L., Li, Y., Ren, J.G., ..., Pan, J.W.: Satellite-to-ground quantum key distribution. Nature 549 (7670), 43–47 (2017)

    Article  ADS  Google Scholar 

  15. Huang, D., Huang, P., Lin, D.K., Zeng, G.H.: Long-distance continuous-variable quantum key distribution by controlling excess noise. Sci. Rep. 6(1), 1–9 (2016)

    Article  Google Scholar 

  16. Weedbrook, C., Pirandola, S., Garcá-Patrón, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys. 84(2), 621 (2012)

    Article  ADS  Google Scholar 

  17. Feng, Y.Y., Shi, R.H., Guo, Y.: Arbitrated quantum signature scheme with continuous-variable squeezed vacuum states. Chinese Phys. B 27 (2), 020302 (2018)

    Article  ADS  Google Scholar 

  18. Guo, Y., Feng, Y.Y., Huang, D., Shi, J.: Arbitrated quantum signature scheme with continuous-variable coherent states. Int. J. Theor. Phys. 55 (4), 2290–2302 (2016)

    Article  Google Scholar 

  19. Thornton, M., Scott, H., Croal, C., Korolkova, N.: Continuous-variable quantum digital signatures over insecure channels. Phys. Rev. A. 99(3), 032341 (2019)

    Article  ADS  Google Scholar 

  20. Croal, C., Peuntinger, C., Heim, B., Khan, I., Marquardt, C., Leuchs, G., Wallden, P., Andersson, E., Korolkova, N.: Free-space quantum signatures using heterodyne measurements. Phys. Rev. Lett. 117(10), 100503 (2016)

    Article  ADS  Google Scholar 

  21. Qi, B., Huang, L.L., Qian, L., Lo, H.K.: Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers. Phys. Rev. A. 76(5), 052323 (2007)

    Article  ADS  Google Scholar 

  22. Jouguet, P., Kunz-Jacques, S., Leverrier, A., Grangier, P., Diamanti, E.: Experimental demonstration of long-distance continuous-variable quantum key distribution. Nat. Photonics. 7(5), 378–381 (2013)

    Article  ADS  Google Scholar 

  23. Heim, B., Peuntinger, C., Killoran, N., Khan, I., Wittmann, C., Marquardt, C., Leuchs, G.: Atmospheric continuous-variable quantum communication. New J. Phys. 16(11), 113018 (2014)

    Article  ADS  Google Scholar 

  24. Jouguet, P., Kunz-Jacques, S., Diamanti, E.: Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution. Phys. Rev. A. 87(6), 062313 (2013)

    Article  ADS  Google Scholar 

  25. Huang, J.Z., Weedbrook, C., Yin, Z.Q., Wang, S., Li, H.W., Chen, W., Guo, G.C., Han, Z.F.: Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack. Phys. Rev. A. 87(6), 062329 (2013)

    Article  ADS  Google Scholar 

  26. Ma, X.C., Sun, S.H., Jiang, M.S., Liang, L.M.: Wavelength attack on practical continuous-variable quantum-key-distribution system with a heterodyne protocol. Phys. Rev. A. 87(5), 052309 (2013)

    Article  ADS  Google Scholar 

  27. Lin, J., Tseng, H.Y., Hwang, T.: Intercept-resend attacks on Chen others.’s quantum private comparison protocol and the improvements. Opt. Commun. 284(9), 2412–2414 (2011)

    Article  ADS  Google Scholar 

  28. Qi, B., Lougovski, P., Pooser, R., Grice, W., Bobrek, M.: Generating the local oscillator “locally” in continuous-variable quantum key distribution based on coherent detection. Phys. Rev. X. 5(4), 041009 (2015)

    Google Scholar 

  29. Dunjko, V., Wallden, P., Andersson, E.: Quantum digital signatures without quantum memory. Phys. Rev. Lett. 112(4), 040502 (2014)

    Article  ADS  Google Scholar 

  30. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58, 13–30 (1963)

    Article  MathSciNet  Google Scholar 

  31. Becir, A., El-Orany, F.A.A., Wahiddin, M.R.B.: Continuous-variable quantum key distribution protocol with eight-state discrete modulation. Int. J. Quantum Inf. 10(01), 1250004 (2012)

    Article  MathSciNet  Google Scholar 

  32. Collins, R.J., Donaldson, R.J., Dunjko, V., Wallden, P., Clarke, P.J., Andersson, E., Jeffers, J., Buller, G.S.: Realization of quantum digital signatures without the requirement of quantum memory. Phys. Rev. Lett. 113, 040502 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Fundamental Research Funds for the Central Universities of Central South University (Grant No. 2021zzts0207, 2021zzts0202), the Hunan Provincial Innovation Foundation for Postgraduate (Grant No. CX20210250), and the National Natural Science Foundation of China (Grant No. 61872390).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Ding or Huilong Fan.

Ethics declarations

Conflict of Interests

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, X., Zhao, W., Shi, R. et al. Quantum Digital Signature with Continuous-Variable. Int J Theor Phys 61, 144 (2022). https://doi.org/10.1007/s10773-022-05132-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05132-8

Keywords

Navigation