Skip to main content

Advertisement

Log in

Probing the Information-Probabilistic Description

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The information conservation principle is probed for classically isolated systems, like the Hubble sphere and black holes, for which the rise of entanglement entropy across their horizons is expected. We accept the analogy of Landauer’s principle that entanglement information should introduce some negative potential energy, which corresponds to the positive energy of measurements that destroy this quantum behavior. We estimated these dark-energy-like contributions and found that they can explain the dark energy of the Universe and also are able to resolve the observed superluminal motion and redshift controversies for black holes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carroll, R.: On the Emergence Theme of Physics. World Scientific, Singapore (2010)

    Book  MATH  Google Scholar 

  2. Ashtekar, A., Rovelli, C., Smolin, L.: Weaving a classical geometry with quantum threads. Phys. Rev. Lett. 69, 237 (1992). https://doi.org/10.1103/PhysRevLett.69.237. arXiv:hep-th/9203079 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Connes, A., Rovelli, C.: Von Neumann algebra automorphisms and time thermodynamics relation in general covariant quantum theories. Class. Quant. Grav. 11, 2899 (1994). https://doi.org/10.1088/0264-9381/11/12/007 arXiv:gr-qc/9406019 [gr-qc]

    Article  ADS  MATH  Google Scholar 

  4. Jacobson, T.: Thermodynamics of space-time: The Einstein equation of state. Phys. Rev. Lett. 75, 1260 (1995). https://doi.org/10.1103/PhysRevLett.75.1260 arXiv:gr-qc/9504004 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Padmanabhan, T.: Thermodynamical aspects of gravity: New insights. Rept. Prog. Phys. 73, 046901 (2010). https://doi.org/10.1088/0034-4885/73/4/046901 arXiv:0911.5004 [gr-qc]

    Article  ADS  Google Scholar 

  6. Cao, C., Carroll, S. M., Michalakis, S.: Space from Hilbert space: Recovering geometry from bulk entanglement. Phys. Rev. D 95, 024031 (2017). https://doi.org/10.1103/PhysRevD.95.024031 arXiv:1606.08444 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  7. Verlinde, E. P.: On the origin of gravity and the laws of newton. JHEP 04, 029 (2011). https://doi.org/10.1007/JHEP04(2011)029 arXiv:1001.0785 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Amari, S. I.: Differential-Geometrical Methods in Statistics. Springer Science & Business Media (2012)

  9. Caticha, A.: Entropic dynamics, time and quantum theory. J. Phys. A 44, 225303 (2011). https://doi.org/10.1088/1751-8113/44/22/225303 arXiv:1005.2357 [quant-ph]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Bekenstein, J. D.: Black holes and entropy. Phys. Rev. D 7, 2333 (1973). https://doi.org/10.1103/PhysRevD.7.2333

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Padmanabhan, T.: Emergence and expansion of cosmic space as due to the quest for holographic equipartition, arXiv:1206.4916 [hep-th] (2012)

  12. Wald, R. M.: Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics. University of Chicago Press, Chicago (1994)

    MATH  Google Scholar 

  13. Wilde, M. M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). arXiv:1106.1445 [quant-ph]

    Book  MATH  Google Scholar 

  14. Landauer, R.: Information is physical. Phys. Today 44, 23 (1991). https://doi.org/10.1063/1.881299

    Article  ADS  Google Scholar 

  15. Horodecki, M., Oppenheim, J., Winter, A.: Partial quantum information. Nature 436, 673 (2005). https://doi.org/10.1038/nature03909 arXiv:quant-ph/0505062

    Article  ADS  Google Scholar 

  16. del Rio, L., Aberg, J., Renner, R., Dahlsten, O., Vedral, V.: The thermodynamic meaning of negative entropy. Nature 474, 61 (2011). https://doi.org/10.1038/nature10123 arXiv:1009.1630 [quant-ph]

    Article  Google Scholar 

  17. Cerf, N. J., Adami, C.: Negative entropy and information in quantum mechanics. Phys. Rev. Lett. 79, 5194 (1997). https://doi.org/10.1103/PhysRevLett.79.5194 arXiv:quant-ph/9512022 [quant-ph]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Wallace, D.: Gravity, entropy, and cosmology: In search of clarity. Brit. J. Phil. Sci. 61, 513 (2010). https://doi.org/10.1093/bjps/axp048 arXiv:0907.0659 [cond-mat.stat-mech]

    Article  MathSciNet  Google Scholar 

  19. Penrose, R: The Big Bang and Its Thermodynamic Legacy in Road to Reality. Vintage Books, London (2004)

    Google Scholar 

  20. Egan, C. A., Linewaver, C. A.: A Larger estimate of the entropy of the universe. Astrophys. J. 710, 1825 (2010). https://doi.org/10.1088/0004-637X/710/2/1825 arXiv:0909.3983 [astro-ph.CO]

    Article  ADS  Google Scholar 

  21. Gogberashvili, M.: Cosmological constant from the entropy balance condition. Adv. High Energy Phys. 2018, 3702498 (2018). https://doi.org/10.1155/2018/3702498 arXiv:1807.06943 [physics.gen-ph]

    MathSciNet  Google Scholar 

  22. Gogberashvili, M.: Information-probabilistic description of the universe. Int. J. Theor. Phys. 55, 4185 (2016). https://doi.org/10.1007/s10773-016-3045-4 arXiv:1504.06183 [physics.gen-ph]

    Article  MathSciNet  MATH  Google Scholar 

  23. Gogberashvili, M.: On the dynamics of the ensemble of particles in the thermodynamic model of gravity. J. Mod. Phys. 5, 1945 (2014). https://doi.org/10.4236/jmp.2014.517189 arXiv:1309.0376 [gr-qc]

    Article  Google Scholar 

  24. Gogberashvili, M., Kanatchikov, I.: Cosmological parameters from the thermodynamic model of gravity. Int. J. Theor. Phys. 53, 1779 (2014). https://doi.org/10.1007/s10773-013-1976-6 arXiv:1210.4618 [physics.gen-ph]

    Article  MathSciNet  MATH  Google Scholar 

  25. Gogberashvili, M., Kanatchikov, I.: Machian origin of the entropic gravity and cosmic acceleration. Int. J. Theor. Phys. 51, 985 (2012). https://doi.org/10.1007/s10773-011-0971-z arXiv:1012.5914 [physics.gen-ph]

    Article  MATH  Google Scholar 

  26. Gogberashvili, M.: ‘Universal’ FitzGerald contractions. Eur. Phys. J. C 63, 317 (2009). https://doi.org/10.1140/epjc/s10052-009-1108-x arXiv:0807.2439 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Gogberashvili, M.: Machian solution of hierarchy problem. Eur. Phys. J. C 54, 671 (2008). https://doi.org/10.1140/epjc/s10052-008-0559-9 arXiv:0707.4308 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Gogberashvili, M.: The energy meaning of Boltzmann’s constant. Mod. Phys. Lett. B 33, 2150235 (2021). https://doi.org/10.1142/S0217984921502353 arXiv:2104.03910 [physics.gen-ph]

    Article  Google Scholar 

  29. Atkins, P.: Four laws that drive the universe. Oxford University Press, Oxford (2007)

  30. Kalinin, M., Kononogov, S.: Boltzmann’s constant, the energy meaning of temperature and thermodynamic irreversibility. Meas. Tech. 48, 632 (2005). https://doi.org/10.1007/s11018-005-0195-9

    Article  Google Scholar 

  31. Cover, T. M., Thomas, J. A.: Elements of Information Theory. Wiley, New York (2001)

    MATH  Google Scholar 

  32. Brukner, C., Zeilinger, A.: Conceptual inadequacy of the Shannon information in quantum measurements. Phys. Rev. A 63, 022113 (2001). https://doi.org/10.1103/PhysRevA.63.022113 arXiv:quant-ph/0006087 [quant-ph]

    Article  ADS  Google Scholar 

  33. Bennett, C. H.: Notes on Landauer’s principle, reversible computation, and Maxwell’s Demon. Stud. Hist. Phil. Mod. Phys. 34, 501 (2003). https://doi.org/10.1016/S1355-2198(03)00039-X arXiv:physics/0210005 [physics.class-ph]

    Article  MathSciNet  MATH  Google Scholar 

  34. Herrera, L.: Landauer Principle and General Relativity. Entropy 22, 340 (2020). https://doi.org/10.3390/e22030340 arXiv: 2003.07436 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  35. Ilgin, I., Yang, I. S.: Energy carries information. Int. J. Mod. Phys. A 29, 1450115 (2014). https://doi.org/10.1142/S0217751X14501152 arXiv:1402.0878 [hep-th]

    Article  ADS  MATH  Google Scholar 

  36. Unruh, W. G.: Decoherence without dissipation. Trans. Roy. Soc. Lond. 370, 4454 (2012). https://doi.org/10.1098/rsta.2012.0163 arXiv:1205.6750 [quant-ph]

    ADS  MathSciNet  MATH  Google Scholar 

  37. Jaynes, E. T.: Information theory and statistical mechanics. Phys. Rev. 106, 620 (1957). https://doi.org/10.1103/PhysRev.106.620

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Pavon, D., Radicella, N.: Does the entropy of the Universe tend to a maximum?. Gen. Rel. Grav. 45, 63 (2013). https://doi.org/10.1007/s10714-012-1457-x arXiv:1209.3004 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Krishna, P. B., Mathew, T. K.: Holographic equipartition and the maximization of entropy. Phys. Rev. D 96, 063513 (2017). https://doi.org/10.1103/PhysRevD.96.063513 arXiv:1702.02787 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  40. Barrow, J. D., Tipler, F. J.: Action principles in nature. Nature 331, 31 (1988). https://doi.org/10.1038/331031a0

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Feynman, R. P., Morinigo, F. B., Wagner, G.: Feynman Lectures on Gravitation. Addison-Wesley, Reading (1995)

    Google Scholar 

  42. Hawking, S.: A Brief History of Time. Bantam, Toronto (1988)

    Book  Google Scholar 

  43. Lee, J. W., Lee, J., Kim, H. C.: Dark energy from vacuum entanglement. JCAP 08, 005 (2007). https://doi.org/10.1088/1475-7516/2007/08/005 arXiv:hep-th/0701199 [hep-th]

    Article  ADS  Google Scholar 

  44. Polchinski, J.: The black hole information problem. In: New Frontiers in Fields and Strings (TASI 2015) p. 353 https://doi.org/10.1142/9789813149441_0006 arXiv:1609.04036 [hep-th] (2015)

  45. Gogberashvili, M., Pantskhava, L.: Black hole information problem and wave bursts. Int. J. Theor. Phys. 57, 1763 (2018). https://doi.org/10.1007/s10773-018-3702-x arXiv:1608.04595 [physics.gen-ph]

    Article  MathSciNet  MATH  Google Scholar 

  46. Hackmann, E., Lammerzahl, C.: Geodesic equation in Schwarzschild- (anti-) de Sitter space-times: Analytical solutions and applications. Phys. Rev. D 78, 024035 (2008). https://doi.org/10.1103/PhysRevD.78.024035 arXiv:1505.07973 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  47. Giroletti, M., et al.: The kinematic of HST-1 in the jet of M 87. Astron. and Astrophys. Let. 538, L10 (2012). https://doi.org/10.1051/0004-6361/201218794 arXiv: 1202.0013 [astro-ph.CO]

    Article  ADS  Google Scholar 

  48. Snios, B., et. al.: Detection of superluminal motion in the X-ray jet of M87. Astrophys. J. 879, 8 (2019). https://doi.org/10.3847/1538-4357/ab2119 arXiv:1905.04330 [astro-ph.HE]

    Article  ADS  Google Scholar 

  49. Akiyama, K., et al.: [Event Horizon Telescope], First M87 Event Horizon Telescope results. VIII. Magnetic field structure near the event horizon. Astrophys. J. Lett. 910, L13 (2021). https://doi.org/10.3847/2041-8213/abe4de

    Article  ADS  Google Scholar 

  50. Arp, H. C.: Quasars, Redshifts and Controversies. Cambridge University Press, Cambridge (1988)

    Book  Google Scholar 

  51. Wolf, C., et. al.: Discovery of the most ultra-luminous QSO using Gaia, SkyMapper and WISE. Publ. Astron. Soc. Austral. 35, e024 (2018). https://doi.org/10.1017/pasa.2018.22 arXiv:1805.04317 [astro-ph.GA]

    Article  ADS  Google Scholar 

  52. López-Corredoira, M.: Pending problems in QSOs. Int. J. Astron. Astrophys. 1, 73 (2011). https://doi.org/10.4236/ijaa.2011.12011 arXiv:0910.4297 [astro-ph.CO].

    Article  Google Scholar 

Download references

Funding

M. G. acknowledges the support by Shota Rustaveli National Science Foundation of Georgia through the grant DI-18-335.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to the research and read and approved the final manuscript.

Corresponding author

Correspondence to Merab Gogberashvili.

Ethics declarations

Conflict of Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gogberashvili, M., Modrekiladze, B. Probing the Information-Probabilistic Description. Int J Theor Phys 61, 149 (2022). https://doi.org/10.1007/s10773-022-05129-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05129-3

Keywords

Navigation