Skip to main content
Log in

Randomizing Quantum Walk

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The conditional shift operator in Discrete-time Quantum Walk (DTQW) shifts the position of the walker by unit shift-size depending on the coin state. This scenario can be generalized by choosing the shift-size different from the unit size. The first generalization made in this work is that shift-size is greater than unit size. The second variant is made out of allowing shift-size in positive and negative directions to be not equal to each other. The third type is developed by choosing the shift-size randomly at each step. We have calculated several parameters for these walks. The probability in each case evolves depending on the choice of the shift-sizes. All three walks spread faster than the standard DTQW. In the case of random shift-size, the probability becomes random but still follows some specific pattern. The increase in shift-size, on one hand, preserves the overall behavior but on other hand increases standard deviations σ for random choice of shift-size. For all these variants the Shannon entropy remains the same for the initial steps and then becomes small (after a few steps) than the Shannon entropy of standard DTQW. The Shannon entropy for random shift-size is of random behavior. The entanglement entropy remains the same as that of DTQW with small variations at higher steps. For the special case of the walk with a left-side shift-size greater than the right-side shift-size, the entropy reduces drastically after a few initial steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Knight, F.B.: On the Random Walk and Brownian Motion, Trans. Amer. Math. Soc., vol. 103 (1962)

  2. Hoshino, S., Ichida, K.: Solution of partial differential equations by a modified random walk. Numerische Mathematik 18, 1 (1971)

    Article  MathSciNet  Google Scholar 

  3. Ryan, C.A., Laforest, M., Boileau, J.C., Laflamme, R.: Laflamme, Experimental implementation of a discrete-time quantum random walk on an NMR quantum-information processor. Phys Rev A 72, 062317 (2005)

    Article  ADS  Google Scholar 

  4. Flurin, E., Ramasesh, V.V., Hacohen-Gourgy, S., Martin, L.S., Yao, N.Y., Siddiqi, I.: Siddiqi, Observing Topological Invariants Using Quantum Walks in Superconducting Circuits, vol. 7 (2017)

  5. Farhi, E., Gutmann, S.: Quantum computation and decision trees. Phys. Rev. A 58, 915 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  6. Lovett, N.B., Cooper, S., Everitt, M., Trevers, M., Kendon, V.: Universal quantum computation using the discrete-time quantum walk. Phys. Rev. A 81, 042330 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  7. Hamilton, C.S., Barkhofen, S., Sansoni, L., Jex, I., Silberhorn, C.: Driven discrete time quantum walks. New J. Phys 8(8), 073008 (2016)

    Article  Google Scholar 

  8. Kurzyński, P., Wójcik, A.: Discrete-time quantum walk approach to state transfer. Phys. Rev. A 18, 062315 (2016)

    Google Scholar 

  9. Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., Watrous, J.: One-dimensional quantum walks, J., Proceedings of the 33th STOC (New York, NY: ACM) (2001)

  10. Kempe, J.: Quantum random walks: An introductory overview. Contemp. Phys 44, 307 (2003)

    Article  ADS  Google Scholar 

  11. Venegas-Andraca, S.E.: Quantum walks: A comprehensive review. Quantum Inf. Proc. 11, 1015 (2012)

    Article  MathSciNet  Google Scholar 

  12. Childs, A.M., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., Spielman, D.A.: Exponential algorithmic speedup by a quantum walk. In: Proceedings of the thirty-fifth annual ACM symposium on theory of computing (San Diego, CA, USA —June 09 - 11), pp 59–68 (2003)

  13. Childs, A.M., Goldstone, J.: Spatial search by quantum walk. Phys. Rev. A 70, 022314 (2004)

    Article  ADS  Google Scholar 

  14. Poulin, D., Blume-Kohout, R., Laflamme, R., Ollivier, H.: Exponential speedup with a single bit of quantum information: measuring the average fidelity decay. Phys. Rev. Lett. 92, 177906 (2004)

    Article  ADS  Google Scholar 

  15. Ambainis, A.: Quantum walk algorithm for element distinctness. SIAM J. Comput 37, 1 (2007)

    Article  MathSciNet  Google Scholar 

  16. Magniez, F., Santha, M., Szegedy, M.: Quantum algorithms for the triangle problem. SIAM J. Comput 37, 2 (2007)

    Article  MathSciNet  Google Scholar 

  17. Ambainis, A.: Quantum walks and their algorithmic applications. International Journal of Quantum Information 1, 507 (2003)

    Article  Google Scholar 

  18. Shenvi, N., Kempe, J., Whaley, K.B.: Quantum random-walk search algorithm. Phys. Rev. A 67, 052307 (2003)

    Article  ADS  Google Scholar 

  19. Kitagawa, T., Rudner, M.S., Berg, E., Demler, E.: Exploring topological phases with quantum walks. Phys. Rev. A 82, 033429 (2010)

    Article  ADS  Google Scholar 

  20. Obuse, H., Asbóth, J. K., Nishimura, Y., Kawakami, N.: Unveiling hidden topological phases of a one-dimensional Hadamard quantum walk. Phys. Rev. B 92, 045424 (2015)

    Article  ADS  Google Scholar 

  21. Obuse, H., Kawakami, N.: Topological phases and delocalization of quantum walks in random environments. Phys. Rev. B 84, 195139 (2011)

    Article  ADS  Google Scholar 

  22. Asbóth, J.K., Obuse, H.: Bulk-boundary correspondence for chiral symmetric quantum walks. Phys. Rev. B 88, 121406 (2013)

    Article  ADS  Google Scholar 

  23. Mackay, T.D., Bartlett, S.D., Stephenson, L.T., Sanders, B.C.: Quantum walks in higher dimensions. J. Phys. A: Math. Gen 32, 352745 (2002)

    ADS  MATH  Google Scholar 

  24. Kendon, V.: Quantum walks on general graphs. Int. J. Quantum Inf 04, 5 (2006)

    Article  Google Scholar 

  25. Brun, T.A., Carteret, H.A., Ambainis, A.: Quantum walks driven by many coins. Phys. Rev. A 67, 052317 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  26. Pathak, P.K., Agarwal, G.S.: Quantum random walk of two photons in separable and entangled states. Phys. Rev. A 75, 032351 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  27. Ribeiro, P., Milman, P., Mosseri, R.: Aperiodic Quantum Random Walks. Phys. Rev. A 93, 190503 (2004)

    MathSciNet  Google Scholar 

  28. Brun, T.A., Carteret, H.A., Ambainis, A.: Quantum random walks with decoherent coins. Phys. Rev. A 67, 032304 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  29. Flitney, A.P., Abbott, D., Johnson, N.F.: Quantum walks with history dependence. J. Phys. A: Math. Gen 37, 30 (2004)

    Article  MathSciNet  Google Scholar 

  30. CStefaCnák, M., Kiss, T., Jex, I.: Recurrence of biased quantum walks on a line. New J. Phys. 11, 043027 (2009)

    Article  Google Scholar 

  31. Pires, M.A., Duarte Queirós, S.M.: Quantum walks with sequential aperiodic jumps. arXiv:1910.02254v1 [quant-ph] (2019)

  32. Shannon, C.E.: A Mathematical theory of communication. Bell Syst. Tech. J. 27, 3 (1948)

    Article  MathSciNet  Google Scholar 

  33. Zeng, M., Yong, E.H.: Discrete-Time Quantum Walk with Phase Disorder: Localization and Entanglement Entropy. Sci Rep 7, 12024 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashid Ahmad.

Ethics declarations

Conflict of Interests

The authors have no conflicts to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaman, A., Ahmad, R., Bibi, S. et al. Randomizing Quantum Walk. Int J Theor Phys 61, 135 (2022). https://doi.org/10.1007/s10773-022-05113-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05113-x

Keywords

Navigation