Skip to main content
Log in

Quantum (t,n) Threshold Proxy Blind Signature Scheme Based on Bell States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

From the practical demand, this paper proposes a quantum (t,n) threshold proxy blind signature scheme based on Bell states. In our scheme, any t members of n proxy signers can cooperate to generate valid signatures on behalf of the original signer, and less than t can not. The original signer uses the quantum-controlled-not operations to expand the single particle quantum state into t-particle quantum states, and then uses the entanglement swapping to transmit the signature right of the original signer to t proxy signers. The proxy signers cooperate to complete signatures,through single particle measurements and performing the unitary operations of Pauli operator on arbitrarily Bell states. With the assistance of arbitration,the message receiver recovers the initial quantum information through single particle measurements and corresponding unitary operation to complete the verification. In order to ensure the secrecy of the message, the scheme also blinds the message, so that no one can know the content of the message except the owner and receiver of the message. The scheme is mainly completed by a series of quantum technologies and quantum algorithms, such as quantum key distribution protocol, quantum one-time pad algorithm, CNOT operation, Bell measurement, single particle measurement and unitary operation. So, it has the security of quantum signature. And the technologies used are general quantum technology, which is convenient for practice. Therefore, our quantum (t,n) threshold proxy blind signature scheme is a more practical signature scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The data in this article can be made public.

References

  1. Rivest, R.L., Shamir, A., Aldleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21, 120–126 (1978)

    Article  MathSciNet  Google Scholar 

  2. Mambo, M., Usuda, K., Okamoto, E.: Proxy signatures for delegating signing operation. In: Proceedings of the 3rd ACM Conference on Computer and Communications Security, pp. 48–57, New Delhi (1966)

  3. Chaum, D.: Blind signature for untraceable payments. In: Proceeding of CRTPTOi-82, pp. 199–203. Plenum Publishing (1982)

  4. Lin, W.D., Jan, J.K.: A security personal learning tools using a proxy blind signature scheme. In: Proceedings of International Conference on Chinese Language Computing, pp. 273–277. IEEE Press Illinois, USA (2000)

  5. Desmedt, Y., Frankel, Y.: Shared generation of authenticators and signatures[J]. Proc. CRYPTO91 Lect. Note Comput. Sci. 576, 457–469 (1992)

    Article  Google Scholar 

  6. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MathSciNet  Google Scholar 

  7. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Twenty-eighth ACM Symposium on Theory of Computing, pp. 212–219 (1996)

  8. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)

    Article  ADS  Google Scholar 

  9. Mayers, D.: Unconditional security in quantum cryptography. J. ACM 48(3), 351–406 (2001)

    Article  MathSciNet  Google Scholar 

  10. Inamon, H., Lutkenhaus, N., Mayers, D.: Unconditional security of practical quantum key distribution. Eur. Phys. J. D 41(3), 599–627 (2007)

    Article  ADS  Google Scholar 

  11. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 052319, 69 (2004)

    Google Scholar 

  12. Gottesman, D., Chuang, I.: Quantum digital signature arXiv:0105032v2 (2001)

  13. Bamum, H., et al.: Authentication of quantum messages. In: Focs2002: 43rd Annual IEEE symposium on Foundations of Computer Science, Proceedings, pp 449–458 (2002)

  14. Zeng, G., Keitel, C.H.: Arbitrated quantun-siganture scheme. Phys. Rev. A65(4), 0423 (2002)

    Google Scholar 

  15. Shi, R.H., Feng, Y.Y., Shi, J.J.: Arbitrated quantum signature scheme with quantum walks on regular graphs. J Electron. Inform. Technol. 42(1), 89–97 (2020)

    Google Scholar 

  16. Lou, X.P., Tang, W.S., Long, H., Cheng, Y.: A quantum blind signature scheme based on block encryption and quantum fourier transfer. Int. J Theor. Phys. 58, 3192–3202 (2019)

    Article  MathSciNet  Google Scholar 

  17. Li, X.Y., Chang, Y., Zhang, S.B., Dai, J.Q., Zheng, T.: Quantum blind signature scheme based on quantum walk. Int. J Theor. Phys. 59, 2059–2073 (2020)

    Article  MathSciNet  Google Scholar 

  18. Qin, H.W., Wallace, K.S., Tang, R.T.: Efficient quantum multi-proxy signature. Quantum Inform. Process. 18, 53 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  19. Tan, R.M., Yang, Q.L.: Comments on the efficient quantum multi-proxy signature. Quantum Inf. Process 19, 288 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  20. Zheng, T., Zhang, S.B., Chang, Y., Yan, L.L.: A quantum proxy arbitrated signature scheme based on two three-qubit GHZ states, pp 289–297. Springer, Switzerland (2020)

    Google Scholar 

  21. Liang, X.Q., Wu, Y.L., et al.: Quantum multi-proxy blind signature scheme based on four-qubit cluster states. Int. J Theor. Phys. 58, 31–39 (2019)

    Article  Google Scholar 

  22. Liu, G., Ma, W.P., et al.: A novel quantum group proxy blind signature scheme based on five-qubit entangled state. Int. J Theor. Phys. 58, 1999–2008 (2019)

    Article  MathSciNet  Google Scholar 

  23. Zhou, B.M., Lin, L.D., Wang, W., Liu, Y.: Security analysis of particular quantum proxy blind signature against the forgery attack. Int. J. Theor. Phys. 59, 465–473 (2020)

    Article  MathSciNet  Google Scholar 

  24. Zhang, X., Zhang, J.Z., Xie, S.C.: A quantum proxy signature scheme by using random sequence to blind the message. Int. J. Theor. Phys. 58, 2081–2090 (2019)

    Article  MathSciNet  Google Scholar 

  25. Niu, X.F., Ma, W.P., Chen, B.Q., Liu, G., Wang, Q.Z.: A quantum proxy blind signature scheme based on superdense coding. Int. J. Theor. Phys. 59, 1121–1128 (2020)

    Article  MathSciNet  Google Scholar 

  26. Yang, Y.G., Wen, Q.Y.: Threshold proxy quantum signature scheme with threshold shared verifcation. Sci. China Phys. Mech. Astron. 51, 1079–1088 (2008)

    Article  ADS  Google Scholar 

  27. Shamir, A.: How to share a secret. Commun. ACM 11, 612–613 (1979)

    Article  MathSciNet  Google Scholar 

  28. Shi, J.J., Shi, R.H., Guo, Y., Peng, X.Q., Lee, M.H., Park, D.S.: A (t, n)-threshold scheme of multiparty quantum group signature with irregular quantum Fourier transform. Int. J. Theor. Phys. 51, 1038–1049 (2012)

    Article  Google Scholar 

  29. Qin, H.W., Wallace, K.S., Tang, R.T.: Quantum (t, n) threshold group signature based on bell state. Quantum Inform. Process. 19, 71 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  30. Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, pp. 175–179 (1984)

  31. Lo, H.K., Ma, X.F., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 230504, 94 (2005)

    Google Scholar 

  32. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 052319, 69 (2004)

    Google Scholar 

  33. Hu, J.Y., Yu, B., Jing, M.Y., et al.: Experimental quantum secure direct communication with single photons. Light Sci. Appl. e16144, 5 (2016)

    Google Scholar 

  34. Vernam, G.: Cipher printing telegraph systems for secret wire and radio telegraphic communication. Trans. A. I. E. E. XLV, 295–301 (1926)

    Article  Google Scholar 

  35. Zhao, Q.L., Li, X.Y.: A bargmann system and the involutive solutions associated with a new 4-order lattice hierarchy. Anal. Math. Phys. 6(3), 237–254 (2016)

    Article  MathSciNet  Google Scholar 

  36. Qin, H.W., Dai, Y.W.: Verifiable (t,n) threshold quantum secert sharing using d-dimensional Bell state. Inform. Process. Lett. 116, 351–355 (2016)

    Article  MathSciNet  Google Scholar 

  37. Fan, L., Zhang, K.J., Qin, S.J., Guo, F.Z.: A novel quantum blind signature scheme with four-particle GHZ states. Int. J. Theor. Phys. 55, 1028–1035 (2016)

    Article  MathSciNet  Google Scholar 

  38. Zeng, G.H., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 042312, 65 (2002)

    Google Scholar 

  39. Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using Bell states. Phys. Rev. A 054307, 79 (2009)

    MathSciNet  Google Scholar 

  40. Ma, M., Li, Z.H., Xu, T.T.: Verifiable (n,n) threshold quantum secret sharing scheme. Comput. Eng. 43(8), 169–172 (2017)

    Google Scholar 

Download references

Funding

This work is supported by the Postdoctoral Science Foundation of China (Grant Nos. 2018M633456) and Natural Science Basic Research Program of Shaanxi Province(Grant Nos. 2019JQ-472)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Zhang.

Ethics declarations

Ethics approval

There is no conflict of interest involved. All authors read and approved the final manuscript.

Conflicts of interest/Competing interests

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Consent for Publication

Agree to publish

Additional information

Consent to participate

All authors contributed to the study conception and design. The first draft of the manuscript was written by Yu Jing. Mr. Zhang Jianhua revised the paper. All authors read and approved the final manuscript.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Zhang, J. Quantum (t,n) Threshold Proxy Blind Signature Scheme Based on Bell States. Int J Theor Phys 61, 207 (2022). https://doi.org/10.1007/s10773-022-05112-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05112-y

Keywords

Navigation