Skip to main content
Log in

The Properties of the Polaron in III-V Compound Semiconductor Quantum Dots Induced by the Influence of Rashba Spin-Orbit Interaction

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We study the ground state energy (GSE) of weak coupling polaron confined in quantum dots (QD) of III-V compound semiconductors using the linear combinatorial operator (LCO) and the Lee-Low-Pines unitary transformation (LLPUT) method. Our calculated results show that the GSE of the polaron splits into two branches due to the Rashba spin-orbit (SO) coupling effect, and spin splitting spacing is influenced by Rashba SO coupling strength and the coupling strength and the effective mass of III-V compound semiconductor material. That reveals the SO coupling properties of weak coupling polaron in the QD of III-V compound semiconductors, which provides a theoretical platform for the fabrication of nanometer devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wolf, S.A., et al.: Science. 294, 1488 (2001)

    Article  ADS  Google Scholar 

  2. Baibich, M.N., et al.: Phys. Rev. Lett. 61, 2472 (1988)

    Article  ADS  Google Scholar 

  3. Din, H.U., et al.: Phys. Rev. B. 100, 165425 (2019)

    Article  ADS  Google Scholar 

  4. Alidoust, M., Shen, C., Žutić, I.: Phys. Rev. B. 103, L060503 (2021)

    Article  ADS  Google Scholar 

  5. Valdés-Curiel, A., et al.: Nat. Commun. 12, 1 (2021)

    Article  Google Scholar 

  6. Go, D., et al.: Phys. Rev. B. 103, L121113 (2021)

    Article  ADS  Google Scholar 

  7. Zhu, L., et al.: Phy. Rev. Appl. 8, 064022 (2017)

    Article  ADS  Google Scholar 

  8. Yan, Y.H., Jiang, F., Zhao, H.: Phy. Lett. A. 380, 277 (2016)

    Article  ADS  Google Scholar 

  9. Žutić, I., Fabian, J., Sarma, S.D.: Rev. Mod. Phys. 76, 323 (2004)

    Article  ADS  Google Scholar 

  10. Grollier, J., et al.: Nat. Ele. 3, 360 (2020)

    Article  Google Scholar 

  11. Zhang, S.C., et al.: Science. 301, 1348 (2003)

    Article  ADS  Google Scholar 

  12. Sinova, J., et al.: Phys. Rev. Lett. 92, 126603 (2004)

    Article  ADS  Google Scholar 

  13. Dresselhaus, G.: Physiol. Rev. 100, 580 (1955)

    Article  ADS  Google Scholar 

  14. Rashba, E.I.: Sov. Phys. Solid State. 2, 1109 (1960)

    Google Scholar 

  15. Rashba, E.I.: Phys. Rev. B. 62, R16267 (2000)

    Article  ADS  Google Scholar 

  16. Lee, A.J., et al.: Phys. Rev. Lett. 124, 257202 (2020)

    Article  ADS  Google Scholar 

  17. Ravisankar, R., et al.: Phys. Rev. A. 104, 053315 (2021)

    Article  ADS  Google Scholar 

  18. Noël, P., et al.: Nature. 580, 483 (2020)

    Article  ADS  Google Scholar 

  19. Yim, C.M., et al.: Sci. Adv. 7, eabd7361 (2021)

    Article  ADS  Google Scholar 

  20. Moras, P., et al.: Phys. Rev. B. 91, 195410 (2015)

    Article  ADS  Google Scholar 

  21. Xiong, J.X., et al.: Phys. Rev. B. 103, 085309 (2021)

    Article  ADS  Google Scholar 

  22. Sheng, F., et al.: Nature. 593, 56 (2021)

    Article  ADS  Google Scholar 

  23. Yoshihiro, Y.O., et al.: Phys. Rev. B. 103, L081201 (2021)

    Article  Google Scholar 

  24. Gumber, S., Bhattacherjee, A.B., Jha, P.K.: Phys. Rev. B. 98, 205408 (2018)

    Article  ADS  Google Scholar 

  25. Shan, S.P., Chen, S.H.: Pramana. 94, 1 (2020)

    Article  Google Scholar 

  26. Hosseinpour, P.: Physica B. 593, 412259 (2020)

    Article  Google Scholar 

  27. Noguchi, R., et al.: ArXiv Preprint ArXiv. 2012, 11289 (2020)

    Google Scholar 

  28. Haga, E.: Prog. Theor. Phy. 11, 449 (1954)

    Article  ADS  Google Scholar 

  29. Huybrechts, W.J.: J. Phys. C. 10, 3761 (1977)

    Article  ADS  Google Scholar 

  30. Gharaati, A., Khordad, R.: Opt. Quant. Electron. 44, 425 (2012)

    Article  Google Scholar 

  31. Lee, T.D., Low, F.E., Pines, D.: Physiol. Rev. 90, 297 (1953)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No 12164032).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin-Jun Ma, Xianglian or Yong Sun.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Han, S., Ma, XJ. et al. The Properties of the Polaron in III-V Compound Semiconductor Quantum Dots Induced by the Influence of Rashba Spin-Orbit Interaction. Int J Theor Phys 61, 131 (2022). https://doi.org/10.1007/s10773-022-05049-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05049-2

Keywords

Navigation