Skip to main content
Log in

Quantifying the Quantumness of an Ensemble of Quantum States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

To quantify the quantumness of an ensemble of quantum states, in this article, we generalize the definition of fidelity and affinity between the states to the ensemble of states. Exploiting the notion of fidelity and affinity-based coherence quantifiers of a quantum state, we propose a quantumness quantifier for the ensemble of quantum states. It is shown that the proposed quantifier satisfies the necessary axioms of a bonafide measure of quantumness. Finally, we compute the quantumness of a few well-known ensembles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nielsen, M. A., Chuang, I. L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Walls, D. F., Milburn, G. J.: Quantum optics. Springer, New York (2008)

    Book  MATH  Google Scholar 

  3. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum-enhanced measurements: beating the standard quantum limit science. 306, 1330 (2004)

  4. Dobrzanski, D. R., Maccone, L.: Using entanglement against noise in quantum metrology. Phys. Rev. Lett. 113, 250801 (2014)

    Article  ADS  Google Scholar 

  5. Sarovar, M., Ishizaki, A., Fleming, G. R., Whaley, K. B.: Quantum entanglement in photosynthetic light harvesting complexes. Nat. Phys. 6, 462–467 (2010)

    Article  Google Scholar 

  6. Lloyd, S.: Quantum coherence in biological systems. J. Phys. Conf. Ser. 302, 012037 (2011)

    Article  Google Scholar 

  7. Huelga, S. F., Plenio, M. B.: Vibrations, quanta and biology. Contemp. Phys. 54, 181–207 (2013)

    Article  ADS  Google Scholar 

  8. Lambert, N., Chen, Y. -N., Cheng, Y. -C., Li, C. -M., Chen, G. -Y., Nori, F.: Quantum biology. Nat. Phys. 9, 10–18 (2013)

    Article  Google Scholar 

  9. Aberg, J.: Catalytic coherence. Phys. Rev. Lett. 113, 150402 (2014)

    Article  ADS  Google Scholar 

  10. Lostaglio, M., Korzekwa, K., Jennings, D., Rudolph, T.: Quantum coherence, time-translation symmetry, and thermodynamics. Phys. Rev. X 5, 021001 (2015)

    Google Scholar 

  11. Buffoni, L., Solfanelli, A., Verrucchi, P., Cuccoli, A., Campisi, M.: Quantum measurement cooling. Phys. Rev. Lett. 122, 070603 (2019)

    Article  ADS  MATH  Google Scholar 

  12. Baumgratz, T., Cramer, M., Plenio, M. B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  13. Girolami, D.: Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014)

    Article  ADS  Google Scholar 

  14. Yu, C. -S.: Quantum coherence via skew information and its polygamy. Phys. Rev. A 95, 042337 (2017)

    Article  ADS  Google Scholar 

  15. Bu, K., Singh, U., Fei, S. -M., Pati, A. K., Wu, J.: Maximum relative entropy of coherence: an operational coherence measure. Phys. Rev. Lett. 119, 150405 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  16. Zhao, H., Yu, C. -S.: Reconfigurable and tunable twisted light laser. Sci. Rep. 8, 299 (2018)

    Article  ADS  Google Scholar 

  17. Zhu, H., Hayashi, M., Chen, L.: . J. Phys. A: Math. Theor. 50, 47 (2017)

    Article  Google Scholar 

  18. Rana, S., Parashar, P., Lewenstein, M.: Trace-distance measure of coherence. Phys. Rev. A 93, 012110 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  19. Chen, B., Fei, S. M.: Notes on modified trace distance measure of coherence. Quantum Inf. Process. 17, 107 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Wang, Z., Wang, Y. L., Wang, Z. X.: Trace distance measure of coherence for a class of qudit states. Quantum Inf Process 15, 4641 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Xiong, C., Kumar, A., Wu, J.: Family of coherence measures and duality between quantum coherence and path distinguishability. Phys. Rev. A 98, 032324 (2018)

    Article  ADS  Google Scholar 

  22. Jin, Z. -X., Fei, S. -M.: Quantifying quantum coherence and nonclassical correlation based on Hellinger distance. Phys. Rev. A 062342, 97 (2018)

    Google Scholar 

  23. Liu, C. L., Zhang, D. J., Yu, X. D., Ding, Q. -M., Liu, L.: . Quantum Inf. Process. 16, 198 (2017)

    Article  ADS  Google Scholar 

  24. Feng, X. N., Wei, L. F.: Quantifying quantum coherence with quantum Fisher information. Sci. Rep. 14, 15492 (2017)

    Article  ADS  Google Scholar 

  25. Muthuganesan, R., Chandrasekar, V. K., Sankaranarayanan, R.: Affinity based coherence measure. Phys. Lett. A 127205, 394 (2021)

    MATH  Google Scholar 

  26. Hu, M. -L., Hu, X., Wang, J., Peng, Y., Zhang, Y. -R., Fan, H.: Quantum coherence and geometric quantum discord. Phys. Rep. 762-764, 1–100 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Li, N., Luo, S., Mao, Y.: Quantifying the quantumness of ensembles. Phys. Rev. A 96, 022132 (2017)

    Article  ADS  Google Scholar 

  28. Luo, S., Cao, N. X.: . Period. Math. Hung. 59, 223 (2009)

    Article  Google Scholar 

  29. Hu, M. -L., Fan, H.: Relative quantum coherence, incompatibility, and quantum correlations of states. Phys. Rev. A 95, 052106 (2017)

    Article  ADS  Google Scholar 

  30. Qi, X., Gao, T., Yan, F.: . Front. Phys. 13, 130309 (2018)

    Article  Google Scholar 

  31. Mao, Y., Song, H.: Quantumness of ensembles via coherence. Phys. Lett. A 383, 2698–2703 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Luo, S., Li, N.: . Theor. Math. Phys. 169, 1724 (2011)

    Article  Google Scholar 

  33. Ferro, L., Fazio, R., Illuminati, F., Marmo, G., Pascazio, S., Vedral, V.: . Eur. Phys. J. D. 72, 219 (2018)

    Article  ADS  Google Scholar 

  34. Gisin, N., Massar, S.: Optimal quantum cloning machines. Phys. Rev. Lett. 79, 2153 (1997)

    Article  ADS  Google Scholar 

  35. Zhang, G. -F.: Thermal entanglement and teleportation in a two-qubit Heisenberg chain with Dzyaloshinski-Moriya anisotropic antisymmetric interaction. Phys. Rev. A 75, 034304 (2007)

    Article  ADS  Google Scholar 

  36. Bogdanov, Y. I., Brida, G., Genovese, M., Kulik, S. P., Moreva, E. V., Shurupov, A. P.: Statistical estimation of the efficiency of quantum state tomography protocols. Phys. Rev. Lett. 105, 010404 (2010)

    Article  ADS  Google Scholar 

  37. Gorin, T., Prosen, T., Seligman, H., Znidaric, M.: Dynamics of Loschmidt echoes and fidelity decay. Phys. Rep. 435, 33 (2006)

    Article  ADS  Google Scholar 

  38. Gu, S.-J.: . Int. J. Mod. Phys. B 24, 4371 (2010)

    Article  ADS  Google Scholar 

  39. Muthuganesan, R., Chandrasekar, V. K.: Characterizing nonclassical correlation using affinity. Quantum Inf. Process. 18, 223 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  40. Muthuganesan, R., Chandrasekar, V. K.: Measurement-induced nonlocality based on affinity. Commun. Theor. Phys. 72, 2020 (075103)

  41. Muthuganesan, R., Sankaranaraynan, R.: Fidelity based measurement induced nonlocality. Phys. Lett. A 381, 3028 (2017)

    Article  ADS  MATH  Google Scholar 

  42. Jozsa, R.: Fidelity for mixed quantum states. J. Mod. opt. 41, 2315 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Holevo, A. S.: On quasiequivalence of locally normal states. Theor. Math. Phys. 13, 1071 (1972)

    Article  MATH  Google Scholar 

  44. Luo, S., Zhang, Q.: Informational distance on quantum-state space. Phys. Rev. A 032106, 69 (2004)

    MathSciNet  Google Scholar 

  45. Bhattacharyya, A.: On a measure of divergence between two statistical populations defined by their probability distribution. Bulletin of the Calcutta Mathematical Society 35, 99 (1943)

    MathSciNet  MATH  Google Scholar 

  46. Shao, L. -H., Xi, Z., Fan, H., Li, Y.: Fidelity and trace-norm distances for quantifying coherence. Phys. Rev. A 91, 032106 (2015)

    Article  Google Scholar 

  47. Xiong, C., Kumar, A., Wu, J.: Family of coherence measures and duality between quantum coherence and path distinguishability. Phys. Rev. A 98, 032324 (2018)

    Article  ADS  Google Scholar 

  48. Bennett, C. H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Bennett, C. H., Brassard, G.: Proc. IEEE int. Conf. on computers Systems and Signal Processing, pp. 175–179 (1984)

  50. Phonex, S. J. D., Barnett, S. M., Chefles, A.: Three-state quantum cryptography. J. Mod. Opt. 47, 507 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  51. Boileau, J. C., Tamaki, K., Batuwantudawe, J., Laflamme, R., Renes, J. M.: Unconditional security of a three state quantum key distribution protocol. Phys. Rev. Lett. 94, 040503 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  52. Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Phys. Rev. Lett. 81, 3018 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Muthuganesan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthuganesan, R., Chandrasekar, V.K. Quantifying the Quantumness of an Ensemble of Quantum States. Int J Theor Phys 61, 32 (2022). https://doi.org/10.1007/s10773-022-05042-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05042-9

Keywords

Navigation