Skip to main content
Log in

Quantum Manage of Spontaneous Emission Induced Grating in a Rydberg Coherent Media

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum manipulate of spontaneous emission caused grating is investigated in a four-level coherence system including the Rydberg state. The Rydberg atom interacts with a susceptible probe light and a strong coupling light with a two-dimensional standing wave pattern in x and y directions. Under the presence of spontaneous emission induced coherence (SIC), the amplitude and phase modulations of the surroundings may be managed through adjusting the detuning of the coupling light. It is determined that because of moderating the amplitude and phase modulations of the surroundings, the light power of the probe may be transferred from zero to excessive orders, respectively. In this case, the transferring from amplitude grating to phase grating is viable thru adapting the optical parameters of the environment. Moreover, it’s been determined that for particular scenario of the quantum coherence term, the zero order of the grating will become zero and principal of power transfer to the excessive order. Our proposed form can also furthermore have ability usages withinside the future optical gadgets based totally mostly on Rydberg quantum systems in quantum information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wu, Y., Yang, X.: Electromagnetically induced transparency inV-,Λ-, and cascade-type schemes beyond steady-state analysis. Phys. Rev. A. 71, 053806 (2005)

    Article  ADS  Google Scholar 

  2. Sahrai, M., Asadpour, S.H., Sadighi-Bonabi, R.: Optical bistability via quantum interference from incoherent pumping and spontaneous emission. J. Lumin. 131, 2395–2399 (2011)

    Article  Google Scholar 

  3. Asadpour, S.H., Soleimani, H.R.: Subluminal and superluminal pulse propagation via spin coherence in a defect dielectric medium. Opt. Commun. 315, 394–398 (2014)

    Article  ADS  Google Scholar 

  4. Hamedi, H.R., Asadpour, S.H., Sahrai, M.: Giant Kerr nonlinearity in a four-level atomic medium. Optik - International Journal for Light and Electron Optics. 124, 366–370 (2013)

    Article  Google Scholar 

  5. Ou, B.-Q., Liang, L.-M., Li, C.-Z.: Journal of Physics B: Atomic, Molecular and Optical Physics. 42, 205503 (2009)

    Article  ADS  Google Scholar 

  6. Xu, H.-f., Fu, A.-b., Qin, L., Jin, S.-w.: Refractive index enhancement without absorption in a quantum well system. Superlattice. Microst. 58, 53–59 (2013)

    Article  ADS  Google Scholar 

  7. Li, H., Tang, J., Kang, Y., Zhao, H., Fang, D., Fang, X.,... Wei, Z. (2018). Optical properties of quasi-type-II structure in GaAs/GaAsSb/GaAs coaxial single quantum-well nanowires. Applied physics letters, 113(23), 233104. https://doi.org/10.1063/1.5053844

  8. Du, X., Tian, W., Pan, J., Hui, B., Sun, J., Zhang, K.,... Xia, Y. (2022). Piezo-phototronic effect promoted carrier separation in coaxial p-n junctions for self-powered photodetector. Nano energy, 92, 106694. https://doi.org/10.1016/j.nanoen.2021.106694

  9. Chen, X., Wang, D., Wang, T., Yang, Z., Zou, X., Wang, P.,... Wei, Z. (2019). Enhanced Photoresponsivity of a GaAs Nanowire Metal-Semiconductor-Metal Photodetector by Adjusting the Fermi Level. ACS applied materials & interfaces, 11(36), 33188-33193. https://doi.org/10.1021/acsami.9b07891

  10. Asadpour, S.H., Hamedi, H.R.: Opt. Quant. Electron. 45, 11–20 (2012)

    Article  Google Scholar 

  11. Asadpour, S.H., Soleimani, H.R.: Optical properties of double cascade-type GaAs/AlGaAs multiple quantum well nanostructures via exciton spin relaxation. Phys. B Condens. Matter. 434, 112–117 (2014)

    Article  ADS  Google Scholar 

  12. Asadpour, S.H., Soleimani, H.R.: Phase control of optical bistability based biexciton coherence in a quantum dot nanostructure. Phys. B Condens. Matter. 440, 124–129 (2014)

    Article  ADS  Google Scholar 

  13. Wan, R.-G., Kou, J., Jiang, L., Jiang, Y., Gao, J.-Y.: Electromagnetically induced grating via enhanced nonlinear modulation by spontaneously generated coherence. Phys. Rev. A. 83, 033824 (2011)

    Article  ADS  Google Scholar 

  14. Naseri, T., Sadighi-Bonabi, R.: Efficient electromagnetically induced phase grating via quantum interference in a four-level N-type atomic system. J. Opt. Soc. Am. B. 31, 2430 (2014)

    Article  ADS  Google Scholar 

  15. Asadpour, S.H., Panahpour, A., Jafari, M.: Phase-dependent electromagnetically induced grating in a four-level quantum system near a plasmonic nanostructure. Eur. Phys. J. Plus. 133, 411 (2018)

    Article  Google Scholar 

  16. Arkhipkin, V., Myslivets, S.: Coherent manipulation of the Raman-induced gratings in atomic media. Phys. Rev. A. 93, 013810 (2016)

    Article  ADS  Google Scholar 

  17. Bozorgzadeh, F., Sahrai, M.: All-optical grating in aV+Ξconfiguration using a Rydberg state. Phys. Rev. A. 98, 043822 (2018)

    Article  ADS  Google Scholar 

  18. Ling, H.Y., Li, Y.-Q., Xiao, M.: Electromagnetically induced grating: Homogeneously broadened medium. Phys. Rev. A. 57, 1338–1344 (1998)

    Article  ADS  Google Scholar 

  19. You, Y., Qi, Y.H., Niu, Y.P., Gong, S.Q.: Journal of Physics. Condensed Matter : an Institute of Physics Journal. 31, 105801 (2019)

    Article  ADS  Google Scholar 

  20. Shui, T., Li, L., Wang, X., Yang, W.-X.: Sci. Rep. 10, 1–11 (2020)

    Article  Google Scholar 

  21. Liu, Z.-Z., Chen, Y.-Y., Yuan, J.-Y., Wan, R.-G.: Two-dimensional electromagnetically induced grating via nonlinear modulation in a five-level atomic system. Opt. Commun. 402, 545–550 (2017)

    Article  ADS  Google Scholar 

  22. Yu-Yuan, C., Zhuan-Zhuan, L., Ren-Gang, W.: Electromagnetically induced 2D grating via refractive index enhancement in a far-off resonant system. Laser Phys. Lett. 14, 075202 (2017)

    Article  ADS  Google Scholar 

  23. Zhou, F., Qi, Y., Sun, H., Chen, D., Yang, J., Niu, Y., Gong, S.: Opt. Express. 21, 12249–12259 (2013)

    Article  ADS  Google Scholar 

  24. Vafafard, A., Sahrai, M., Hamedi, H.R., Asadpour, S.H.: Sci. Rep. 10, 1–10 (2020)

    Article  Google Scholar 

  25. Vafafard, A., Sahrai, M., Siahpoush, V., Hamedi, H.R., Asadpour, S.H.: Sci. Rep. 10, 1–13 (2020)

    Article  Google Scholar 

  26. Tauschinsky, A., Thijssen, R.M.T., Whitlock, S., van Linden van den Heuvell, H.B., Spreeuw, R.J.C.: Spatially resolved excitation of Rydberg atoms and surface effects on an atom chip. Phys. Rev. A. 81, 063411 (2010)

    Article  ADS  Google Scholar 

  27. Liu, X., Zhang, G., Li, J., Shi, G., Zhou, M., Huang, B., Yang, W. (2020). Deep Learning for Feynman's Path Integral in Strong-Field Time-Dependent Dynamics. Physical review letters, 124(11), 113202. https://doi.org/10.1103/PhysRevLett.124.113202

  28. Bason, M.G., Tanasittikosol, M., Sargsyan, A., Mohapatra, A.K., Sarkisyan, D., Potvliege, R.M., Adams, C.S.: Enhanced electric field sensitivity of rf-dressed Rydberg dark states. New J. Phys. 12, 065015 (2010)

    Article  ADS  Google Scholar 

  29. Pritchard, J.D., Maxwell, D., Gauguet, A., Weatherill, K.J., Jones, M.P.A., Adams, C.S.: Phys. Rev. Lett. 105, 193603 (2010)

    Article  ADS  Google Scholar 

  30. Asghar, S., Qamar, S., Qamar, S.: Electromagnetically induced grating with Rydberg atoms. Phys. Rev. A. 94, 033823 (2016)

    Article  ADS  Google Scholar 

  31. Asadpour, S.H., Hamedi, H.R., Jafari, M.: Enhancement of Goos–Hänchen shift due to a Rydberg state. Appl. Opt. 57, 4013–4019 (2018)

    Article  ADS  Google Scholar 

  32. Bharti, V., Natarajan, V.: Sub- and super-luminal light propagation using a Rydberg state. Opt. Commun. 392, 180–184 (2017)

    Article  ADS  Google Scholar 

  33. Hamedi, H.R., Sahrai, M., Khoshsima, H., Juzeliūnas, G.: Optical bistability forming due to a Rydberg state. J. Opt. Soc. Am. B. 34, 1923–1929 (2017)

    Article  ADS  Google Scholar 

  34. Solookinejad, G., Jabbari, M., Nafar, M., Ahmadi Sangachin, E., Asadpour, S.H.: Theoretical Investigation of Optical Bistability and Multistability Via Spontaneously Generated Coherence in Four-Level Rydberg Atoms. Int. J. Theor. Phys. 58, 1359–1368 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huijun Kong.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, H. Quantum Manage of Spontaneous Emission Induced Grating in a Rydberg Coherent Media. Int J Theor Phys 61, 42 (2022). https://doi.org/10.1007/s10773-022-05037-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05037-6

Keywords

Navigation