Skip to main content
Log in

Detecting Magic States via Characteristic Functions

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Magic (non-stabilizerness) is a crucial resource for universal fault-tolerant quantum computation in the stabilizer formalism, without which the computation can be classically emulated, as demonstrated by the celebrated Gottesman-Knill theorem. Characterizations of magic, including its detection and quantification, are of interest in quantum computation and have attracted much attention. However, most quantifiers of magic are generally quite difficult to calculate even numerically, or are restricted to systems of special dimensions. The discrete Wigner formalism has been exploited to quantify magic, although it is computable, its application is limited since its formalism is quite different in odd prime power dimensions and other dimensions. In this work, we propose a quantifier of magic in terms of characteristic functions (Fourier transforms) of quantum states, and reveal its basic properties. This quantifier, apart from its nice properties, is well defined in all dimensions and is straightforward to compute. We illustrate the effectiveness of this quantifier in detecting the magic of several representative quantum states. Employing this quantifier, we show that the group covariant symmetric informationally complete (SIC) states possess the maximal magic. Finally, we compare the quantifier of magic with some existing ones including the well known sum negativity and the so called thauma, and show that they yield different orderings of magic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  2. Gottesman, D.: Stabilizer codes and quantum error correction (Ph.D. thesis, California Institute of Technology) (1997)

  3. Gottesman, D.: The Heisenberg representation of quantum computers. arXiv:quant-ph/9807006 (1998)

  4. Aaronson, S., Gottesman, D.: Improved simulation of stabilizer circuits. Phys. Rev. A 70, 052328 (2004)

    Article  ADS  Google Scholar 

  5. Gottesman, D., Chuang, I.: Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390 (1999)

    Article  ADS  Google Scholar 

  6. Zhou, X., Leung, D.W., Chuang, I.L.: Methodology for quantum logic gate construction. Phys. Rev. A 62, 052316 (2000)

    Article  ADS  Google Scholar 

  7. Shor, P.W.: Fault-tolerant quantum computation. arXiv:quant-ph/9605011v2 (1996)

  8. Preskill, J.: Fault-tolerant quantum computation. arXiv:quant-ph/9712048 (1997)

  9. Knill, E.: Quantum computing with realistically noisy devices. Nature 434, 39 (2005)

    Article  ADS  Google Scholar 

  10. Bravyi, S., Kitaev, A.: Universal quantum computation with ideal Clifford gates and noisy ancillas. Phys. Rev. A 71, 022316 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Campbell, E.T., Terhal, B.M., Vuillot, C.: Roads towards fault-tolerant universal quantum computation. Nature 549, 172 (2017)

    Article  ADS  Google Scholar 

  12. Coecke, B., Fritz, T., Spekkens, R.W.: A mathematical theory of resources. Inf. Comput. 250, 59 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gour, G.: Quantum resource theories in the single-shot regime. Phys. Rev. A 95, 062314 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  14. Liu, Z. -W., Bu, K., Takagi, R.: One-shot operational quantum resource theory. Phys. Rev. Lett. 123, 020401 (2019)

    Article  ADS  Google Scholar 

  15. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Gour, G., Spekkens, R.W.: The resource theory of quantum reference frames: manipulations and monotones. New J. Phys. 10, 033023 (2008)

    Article  ADS  Google Scholar 

  17. Gour, G., Marvian, I., Spekkens, R.W.: Measuring the quality of a quantum reference frame: the relative entropy of frameness. Phys. Rev. A 80, 012307 (2009)

    Article  ADS  Google Scholar 

  18. Ahmadi, M., Jennings, D., Rudolph, T.: The Wigner-Araki-Yanase theorem and the quantum resource theory of asymmetry. New J. Phys. 15, 013057 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Luo, S., Sun, Y.: Coherence and complementarity in state-channel interaction. Phys. Rev. A 98, 012113 (2018)

    Article  ADS  Google Scholar 

  20. Brandäo, F. G. S. L., Horodecki, M., Oppenheim, J., Renes, J.M., Spekkens, R.W.: Resource theory of quantum states out of thermal equilibrium. Phys. Rev. Lett. 111, 250404 (2013)

    Article  ADS  Google Scholar 

  21. Gour, G., Muller, M.P., Narasimhachar, V., Spekkens, R.W., Halpern, N.Y.: The resource theory of informational nonequilibrium in thermodynamics. Phys. Rep. 583, 1 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Lostaglio, M., Korzekwa, K., Jennings, D., Rudolph, T.: Quantum coherence, time-translation symmetry, and thermodynamics. Phys. Rev. X 5, 021001 (2015)

    Google Scholar 

  23. Grudka, A., Horodecki, K., Horodecki, M., Horodecki, P., Horodecki, R., Joshi, P., klobus, W., Wójcik, A.: Quantifying contextuality. Phys. Rev. Lett. 112, 120401 (2014)

    Article  ADS  Google Scholar 

  24. Amaral, B.: Resource theory of contextuality. Phil. Trans. Roy. Soc. A 377, 20190010 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  26. Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116, 120404 (2016)

    Article  ADS  Google Scholar 

  27. Chitambar, E., Gour, G.: Quantum resource theories. Rev. Mod. Phys. 91, 025001 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  28. Hughes, C., Genoni, M.G., Tufarelli, T., Paris, M.G.A., Kim, M.S.: Quantum non-Gaussianity witnesses in phase space. Phys. Rev. A 90, 013810 (2014)

    Article  ADS  Google Scholar 

  29. Zhuang, Q., Shor, P.W., Shapiro, J.H.: Resource theory of non-Gaussian operations. Phys. Rev. A 97, 052317 (2018)

    Article  ADS  Google Scholar 

  30. Albarelli, F., Genoni, M.G., Paris, M.G.A., Ferraro, A.: Resource theory of quantum non-Gaussianity and Wigner negativity. Phys. Rev. A 98, 052350 (2018)

    Article  ADS  Google Scholar 

  31. Takagi, R., Zhuang, Q.: Convex resource theory of non-Gaussianity. Phys. Rev. A 97, 062337 (2018)

    Article  ADS  Google Scholar 

  32. Walschaers, M.: Non-Gaussian quantum states and where to find them. PRX Quant. 2, 030204 (2021)

    Article  ADS  Google Scholar 

  33. Kwon, H., Tan, K.C., Volkoff, T., Jeong, H.: Nonclassicality as a quantifiable resource for quantum metrology. Phys. Rev. Lett. 122, 040503 (2019)

    Article  ADS  Google Scholar 

  34. Luo, S., Zhang, Y.: Quantifying nonclassicality via Wigner-Yanase skew information. Phys. Rev. A 100, 032116 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  35. Dai, H., Luo, S.: Information-theoretic approach to atomic spin nonclassicality. Phys. Rev. A 100, 062114 (2019)

    Article  ADS  Google Scholar 

  36. Ge, W., Jacobs, K., Asiri, S., Foss-Feig, M., Zubairy, M.S.: Operational resource theory of nonclassicality via quantum metrology. Phys. Rev. Res. 2, 023400 (2020)

    Article  Google Scholar 

  37. Veitch, V., Ferrie, C., Gross, D., Emerson, J.: Negative quasi-probability as a resource for quantum computation. New J. Phys. 14, 113011 (2012)

    Article  ADS  MATH  Google Scholar 

  38. Veitch, V., Mousavian, S.H., Gottesman, D., Emerson, J.: The resource theory of stabilizer quantum computation. New J. Phys. 16, 013009 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Howard, M., Campbell, E.: Application of a resource theory for magic states to fault-tolerant quantum computing. Phys. Rev. Lett. 118, 090501 (2017)

    Article  ADS  Google Scholar 

  40. Heinrich, M., Gross, D.: Robustness of magic and symmetries of the stabiliser polytope. Quantum 3, 132 (2019)

    Article  Google Scholar 

  41. Seddon, J.R., Campbell, E.T.: Quantifying magic for multi-qubit operations. Proc. Roy. Soc. A 475, 20190251 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Bravyi, S., Haah, J.: Magic-state distillation with low overhead. Phys. Rev. A 86, 052329 (2012)

    Article  ADS  Google Scholar 

  43. Campbell, E., Howard, M.: Unifying gate synthesis and magic state distillation. Phys. Rev. Lett. 118, 060501 (2017)

    Article  ADS  Google Scholar 

  44. Hastings, M.B., Haah, J.: Distillation with sublogarithmic overhead. Phys. Rev. Lett. 120, 050504 (2018)

    Article  ADS  Google Scholar 

  45. Krishna, A., Tillich, J.: Towards low overhead magic state distillation. Phys. Rev. Lett. 123, 070507 (2019)

    Article  ADS  Google Scholar 

  46. Litinski, D.: Magic state distillation: not as costly as you think. Quantum 3, 205 (2019)

    Article  Google Scholar 

  47. Wootters, W.K.: A Wigner-function formulation of finite-state quantum mechanics. Ann. Phys. 176, 1 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  48. Gibbons, K.S., Hoffman, M.J., Wootters, W.K.: Discrete phase space based on finite fields . Phys. Rev. A 70, 062101 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Gross, D.: Hudson’s theorem for finite-dimensional quantum systems. J. Math. Phys. 47, 122107 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Ferrie, C., Emerson, J.: Framed Hilbet space: Hanging the quasi-probability pictures of quantum theory. New J. Phys. 11, 063040 (2009)

    Article  ADS  Google Scholar 

  51. Björk, G., Klimov, A.B., Sánchez-Soto, L.: The discrete Wigner function. Prog. Optics 51, 469 (2008)

    Article  ADS  Google Scholar 

  52. Bravyi, S., Smith, G., Smolin, J.A.: Trading classical and quantum computational resources. Phys. Rev. X 6, 021043 (2016)

    Google Scholar 

  53. Bravyi, S., Gosset, D.: Improved classical simulation of quantum circuits dominated by Clifford gates. Phys. Rev. Lett. 116, 250501 (2016)

    Article  ADS  Google Scholar 

  54. Bravyi, S., Browne, D., Calpin, P., Campbell, E., Gosset, D., Howard, M.: Simulation of quantum circuits by low-rank stabilizer decompositions. Quantum 3, 181 (2019)

    Article  Google Scholar 

  55. Ahmadi, M., Dang, H.B., Gour, G., Sanders, B.C.: Quantification and manipulation of magic states. Phys. Rev. A 97, 062332 (2018)

    Article  ADS  Google Scholar 

  56. Wang, X., Wilde, M.M., Su, Y.: Efficiently computable bounds for magic state distillation. Phys. Rev. Lett 124, 090505 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  57. Liu, Z., Winter, A.: Many-body quantum magic, arXiv:quant-ph/2010.13817 (2020)

  58. Heimendahl, A., Montealegre-Mora, F., Vallentin, F., Gross, D.: Stabilizer extent is not multiplicative. Quantum 5, 400 (2021)

    Article  Google Scholar 

  59. Gross, D.: Non-negative Wigner functions in prime dimensions. Appl. Phys. B 86, 367 (2007)

    Article  ADS  Google Scholar 

  60. Ferrie, C.: Quasi-probability representations of quantum theory with applications to quantum information science. Rep. Prog. Phys. 74, 116001 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  61. Zhu, H.: Permutation symmetry determines the discrete Wigner function. Phys. Rev. Lett 116, 040501 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Schwinger, J.: Unitary operator bases. Proc. Natl. Acad, Sci. USA 46, 570 (1960)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. Appleby, D.M.: Symmetric informationally complete-positive operator valued measures and the extended Clifford group. J. Math Phys. 46, 052107 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. Gross, D., Nezami, S., Walter, M.: Schur-Weyl duality for the Clifford group with applications: property testing, a robust Hudson theorem, and de Finetti representations. Commun. Math. Phys. 385, 1325 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. Zauner, G.: Quantum Designs: Foundations of a Non-commutative Design Theory (PhD thesis, University of Vienna) (1999)

  66. Renes, J.M., Blume-Kohout, R., Scott, A.J., Caves, C.M.: Symmetric informationally complete quantum measurements. J. Math. Phys. 45, 2171 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. Flammia, S.T.: On SIC-POVMs in prime dimensions. J. Phys. A 39, 13483 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. Zhu, H.: SIC POVMs and Clifford groups in prime dimensions. J Phys. A 43, 305305 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  69. Appleby, D.M., Dang, H.B., Fuchs, C.A.: Symmetric informationally-complete quantum states as analogues to orthonormal bases and minimum uncertainty states. Entropy 16, 1484 (2014)

    Article  ADS  Google Scholar 

  70. Zhu, H.: Super-symmetric informationally complete measurements. Ann. Phys. 362, 311 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  71. Fuchs, C.A., Hoang, M.C., Stacey, B.C.: The SIC question: history and state of play. Axioms 6, 21 (2017)

    Article  Google Scholar 

  72. Andersson, D., Bengtsson, I., Blanchfield, K., Dang, H.: States that are far from being stabilizer states. J. Phys. A 48, 345301 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. Wigner, E.P.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749 (1932)

    Article  ADS  MATH  Google Scholar 

  74. Weinbub, J., Ferry, D.K.: Recent advances in Wigner function approaches. Appl. Phys. Rev. 5, 041104 (2018)

    Article  ADS  Google Scholar 

  75. Dankert, C.: Efficient Simulation of Random Quantum States and Operators (Master Thesis, University of Waterloo, Canada) (2005)

  76. Gross, D., Audenaert, K., Eisert, J.: Evenly distributed unitaries: on the structure of unitary designs. J. Math. Phys. 48, 052104 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  77. Howard, M., Vala, J.: Qudit versions of the qubit π/8 gate. Phys. Rev. A 86, 022316 (2012)

    Article  ADS  Google Scholar 

  78. Webb, Z.: The Clifford group forms a unitary 3-design. Quant Inf. Comput. 16, 1379 (2016)

    MathSciNet  Google Scholar 

  79. Zhu, H., Kueng, R., Grassl, M., Gross, D.: The Clifford group fails gracefully to be a unitary 4-design arXiv:quant-ph/1609.08172 (2016)

  80. Zhu, H.: Multiqubit Clifford groups are unitary 3-designs. Phys. Rev. A 96, 062336 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  81. Jain, A., Prakash, S.: Qutrit and ququint magic states. Phys Rev. A 102, 042409 (2020)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China, Grant Nos. 2020YFA0712700, 2019QY0702 and 2017YFA0303903, the Fundamental Research Funds for the Central Universities, Grant No. FRF-TP-19-012A3, and the National Natural Science Foundation of China, Grant No. 11875173.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunlong Luo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, H., Fu, S. & Luo, S. Detecting Magic States via Characteristic Functions. Int J Theor Phys 61, 35 (2022). https://doi.org/10.1007/s10773-022-05027-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05027-8

Keywords

Navigation